FACTOID # 5: Minnesota and Connecticut are both in the top 5 in saving money and total tax burden per capita.
 Home   Encyclopedia   Statistics   States A-Z   Flags   Maps   FAQ   About 


FACTS & STATISTICS    Advanced view

Search encyclopedia, statistics and forums:



(* = Graphable)



Encyclopedia > Zone melting

Zone melting is a method of separation by melting in which a series of molten zones traverses a long ingot of impure metal or chemical. In its common use for purification, the molten region melts impure solid at its forward edge and leaves a wake of purer material solidified behind it as it moves through the ingot. The impurities concentrate in the melt, and are moved to one end of the ingot.

Zone refining was developed by the Bell Telephone Laboratories as a method to prepare high purity materials for manufacturing transistors. Its early use was on germanium for this purpose, but it can be extended to virtually any solute-solvent system having an appreciable concentration difference between solid and liquid phases at equilibrium.

In zone refining, solutes are segregated at one end of the ingot in order to purify the remainder, or to concentrate the impurities for analytical or other purposes. In zone leveling, the objective is to distribute solute evenly throughout the purified material, which may be sought in the form of a single crystal. For example, in the preparation of a transistor or diode semiconductor, an ingot of germanium is first purified by zone refining. Then a small amount of antimony is placed in the molten zone, which is passed through the pure germanium. With the proper choice of rate of heating and other variables, the antimony can be spread evenly through the germanium. This technique is also used for the preparation of silicon for use in computer chips.

Another related process is zone remelting, in which two solutes are distributed through a pure metal. This is important in the manufacture of semiconductors, where two solutes of opposite conductivity type are used. For example, in germanium, pentavalent elements of group V such as antimony and arsenic produce negative (n-type) conduction and the trivalent elements of group III such as aluminium and boron produce positive (p-type) conduction. By melting a portion of such an ingot and slowly refreezing it, solutes in the molten region become distributed to form the desired n-p and p-n junctions.

A variety of heaters can be used for zone melting, with their most important characteristic being the ability to form short molten zones that move slowly and uniformly through the ingot. Induction coils, ring-wound resistance heaters, or gas flames are common methods. Another method is to pass an electric current directly through the ingot while it is in a magnetic field, with the resulting magnetomotive force carefully set to be just equal to the weight in order to hold the liquid suspended. Zone melting can be done as a batch process, or it can be done continuously, with fresh impure material being continually added at one end and purer material being removed from the other, with impure zone melt being removed at whatever rate is dictated by the impurity of the feed stock.



Share your thoughts, questions and commentary here
Your name
Your comments

Want to know more?
Search encyclopedia, statistics and forums:


Press Releases |  Feeds | Contact
The Wikipedia article included on this page is licensed under the GFDL.
Images may be subject to relevant owners' copyright.
All other elements are (c) copyright NationMaster.com 2003-5. All Rights Reserved.
Usage implies agreement with terms, 1022, m