FACTOID # 22: South Dakota has the highest employment ratio in America, but the lowest median earnings of full-time male employees.
 
 Home   Encyclopedia   Statistics   States A-Z   Flags   Maps   FAQ   About 
   
 
WHAT'S NEW
 

SEARCH ALL

FACTS & STATISTICS    Advanced view

Search encyclopedia, statistics and forums:

 

 

(* = Graphable)

 

 


Encyclopedia > Trascendental number

In mathematics, a transcendental number is any irrational number that is not an algebraic number, i.e., it is not the solution of any polynomial equation of the form

where n ≥ 1 and the coefficients ai are integers (or, equivalently, rationals), not all 0.


The set of algebraic numbers is countable while the set of all real numbers is uncountable; this implies that the set of all transcendental numbers is also uncountable, so in a very real sense there are many more transcendental numbers than algebraic ones. However, only a few classes of transcendental numbers are known and proving that a given number is transcendental can be extremely difficult. Another property of the normality of one number might also help to distinguish it to be transcendental.


The existence of transcendental numbers was first proved in 1844 by Joseph Liouville, who exhibited examples, including the Liouville constant:

in which the nth digit after the decimal point is 1 if n is a factorial (i.e., 1, 2, 6, 24, 120, 720, ...., etc.) and 0 otherwise. The first number to be proved transcendental without having been specifically constructed to achieve this was e, by Charles Hermite in 1873. In 1882, Ferdinand von Lindemann published a proof that the number π is transcendental. In 1874, Georg Cantor found the argument described above establishing the ubiquity of transcendental numbers.


See also Lindemann-Weierstrass theorem.


Here is a list of some numbers known to be transcendental:

  • ea if a is algebraic and nonzero. In particular, e itself is transcendental.
  • 2√2 or more generally ab where a ≠ 0,1 is algebraic and b is algebraic but not rational. The general case of Hilbert's seventh problem, namely to determine whether ab is transcendental whenever a ≠ 0,1 is algebraic and b is irrational, remains unresolved.
  • ln(a) if a is positive, rational and ≠ 1
  • Ω, Chaitin's constant.
where is the floor function. For example if β = 2 then this number is 0.11010001000000010000000000000001000...

The discovery of transcendental numbers allowed the proof of the impossibility of several ancient geometric problems involving ruler-and-compass construction; the most famous one, squaring the circle, is impossible because π is transcendental.


 
 

COMMENTARY     


Share your thoughts, questions and commentary here
Your name
Your comments

Want to know more?
Search encyclopedia, statistics and forums:

 


Press Releases |  Feeds | Contact
The Wikipedia article included on this page is licensed under the GFDL.
Images may be subject to relevant owners' copyright.
All other elements are (c) copyright NationMaster.com 2003-5. All Rights Reserved.
Usage implies agreement with terms, 1022, m