FACTOID # 19: Cheap sloppy joes: Looking for reduced-price lunches for schoolchildren? Head for Oklahoma!
 Home   Encyclopedia   Statistics   States A-Z   Flags   Maps   FAQ   About 


FACTS & STATISTICS    Advanced view

Search encyclopedia, statistics and forums:



(* = Graphable)



Encyclopedia > Strong force

The strong nuclear force or strong interaction (also called color force or colour force) is a fundamental force of nature which affects only quarks and antiquarks, and is mediated by gluons in a similar fashion to how the electromagnetic force is mediated by photons. This force is responsible for binding quarks together to form hadrons (including protons and neutrons), and the residual effects also bind these neutrons and protons together in the nucleus of the atom.

According to quantum chromodynamics, every quark carries color charge which comes in three types: "red", "green" and "blue". These are just names and not related to ordinary colors. Antiquarks are either "anti-red", "anti-green" or "anti-blue". Like colors repel, unlike colors attract. The attraction between a color and its anti-color is especially strong. Particles can only exist if their total color is neutral (commonly referred to as a color singlet), meaning that they can either be composed of a (anti-)red, (anti-)green and (anti-)blue quark (such a particle is called a baryon; protons and neutrons are examples), or of a quark and an anti-quark having the corresponding anti-color (such a particle is called a meson).

The strong interaction acts between two quarks by exchanging particles called gluons. There are eight types of gluons, each carrying a color charge and an anti-color charge.

As pairs of quarks interact, they constantly change their color, but in such a way that the total color charge is conserved. If a red quark is attracted to a green quark inside a baryon, a gluon carrying anti-green and red color is emitted from the red quark and absorbed by the green quark; as a result the first quark switches to green and the second to red (total color charge remains green + red). If a blue quark and an anti-blue antiquark interact inside a meson, a gluon carrying for example anti-red and blue could be emitted by the blue quark and absorbed by the anti-blue one; as a result the blue quark turns red and the anti-blue antiquark turns anti-red (total color charge remains 0). Two green quarks repel each other by exchanging a gluon carrying green and anti-green color; the quarks remain green.

Unlike the other fundamental forces, the strong interaction also acts on the strong exchange particles themselves, since gluons carry color charge. This leads to a very limited range of the strong interaction (not much farther than the hadron's radius) even though the gluon does not have mass. It also has the strange effect that the force gets stronger as the distance between the quarks increases. This effect prevents free quarks from being observed. As the distance between two quarks increases, the amount of energy in the force between them increases. If the force becomes strong enough, there is enough energy to create new quarks. This is the reason that one only sees quarks in pairs or triplets and never individually. The textbook analogy is that of a rubber band: when the rubber band is stretched far enough, the band breaks and you have two new rubber bands. Similar with quarks: separate the quark pair far enough, and two new quarks will pop up.

The phenomenon of not being able to separate quarks is called confinement. It is conjectured that quarks that are very close together no longer interact via the strong interaction, and become `free' - this is called asymptotic freedom. The analogy of the rubber band holds here too. Move the ends of the band close together, and they do not `feel' each other.

See also

  Results from FactBites:
Fundamental interaction - Wikipedia, the free encyclopedia (1306 words)
The modern quantum mechanical view of the three fundamental forces (all except gravity) is that particles of matter (fermions) do not directly interact with each other but rather exchange by virtual particles (bosons) called interaction carriers or interaction mediators (as, for example, virtual photons in case of interaction of electric charges).
Electromagnetism is a long-ranged force that is relatively strong, and therefore describes almost all phenomena of our everyday experience—phenomena ranging all the way from lasers and radios to the structure of atoms and the structure of metals to friction and rainbows.
One of the main effects of the strong force, is that it tightly holds two protons together in the Helium nucleus, despite their tremendous electric repulsion.
Strong interaction - Wikipedia, the free encyclopedia (417 words)
The strong interaction or strong force is today understood to represent the interactions between quarks and gluons as detailed by the theory of quantum chromodynamics.
The strong force is the fundamental force mediated by gluons, acting upon quarks, antiquarks, and the gluons themselves.
This force was postulated to overcome the electric repulsion between protons in the nucleus, and for its strength (at short distances) it was dubbed the "strong force".
  More results at FactBites »



Share your thoughts, questions and commentary here
Your name
Your comments

Want to know more?
Search encyclopedia, statistics and forums:


Press Releases |  Feeds | Contact
The Wikipedia article included on this page is licensed under the GFDL.
Images may be subject to relevant owners' copyright.
All other elements are (c) copyright NationMaster.com 2003-5. All Rights Reserved.
Usage implies agreement with terms, 1022, m