FACTOID # 4: Just 1% of the houses in Nevada were built before 1939.
 
 Home   Encyclopedia   Statistics   States A-Z   Flags   Maps   FAQ   About 
   
 
WHAT'S NEW
 

SEARCH ALL

FACTS & STATISTICS    Advanced view

Search encyclopedia, statistics and forums:

 

 

(* = Graphable)

 

 


Encyclopedia > Stellar wind

A solar wind is a stream of particles (mostly high-energy protons ~ 500 keV) which are ejected from the upper atmosphere of a star (in the case of a star other than the Earth's Sun, it may be called a stellar wind instead).

Contents

History

In 1958, Eugene Parker discovered that a stiff wind blows incessantly from the Sun, filling local interplanetary space with ionized gas (plasma). Before the discovery scientists regarded space as a true vacuum. The discovery forever changed how scientists perceive space and helped explain many phenomena, from geomagnetic storms that knock out power grids on Earth to the formation of distant stars.


Around the 1930s, scientists had determined that the temperature of the solar corona must be a million degrees Celsius because of the way it stood out into space (as seen during total eclipses). Some very clever spectroscopic detective work confirmed this extraordinary temperature. In the mid-1950s the British mathematician Sydney Chapman calculated the properties of a gas at such a temperature and determined it was such a superb conductor of heat that it must extend way out into space, beyond the orbit of Earth. Also in the 1950s, a German scientist named Ludwig Biermann got interested in the fact that no matter whether a comet is headed towards or away from the Sun, its tail always points away from the Sun. Biermann postulated that this happens because the Sun emits a steady stream of particles that push the comet tail away.


Parker realised that the heat flowing from the Sun in Chapman's model and the comet tail blowing away from the Sun in Biermann's hypothesis had to be the result of the same phenomenon. Parker showed that even though the Sun's corona is strongly attracted by solar gravity, it is such a good conductor of heat that it is still very hot at large distances. Since gravity weakens as distance from the Sun increases, the outer coronal atmosphere escapes into interstellar space.


Opposition to Parker's hypothesis on the solar wind was strong. The paper he submitted to the Astrophysical Journal in 1958 was rejected by two reviewers. It was saved by then editor Subrahmanyan Chandrasekhar (who later received the 1983 Nobel Prize in physics).


In the 1960s the hypothesis was confirmed through direct satellite observations of the solar wind, which also made it possible to explain magnetic storms, auroras, and other solar-terrestrial phenomena.


Properties

In the solar system, the composition of the solar wind is identical to the Sun's corona, 73% hydrogen and 25% helium with the remainder as trace impurities. The exact composition has not yet been measured. A sample return mission, Genesis, returned to Earth in 2004 and is undergoing analysis, but it was damaged by crash-landing when its parachute failed to deploy on re-entry to Earth's atmosphere.


Near Earth, the velocity of the solar wind varies from 200-889 km/s. The average is 450 km/s. Approximately 800 kg/s of material is lost by the Sun as ejected solar wind, a negligible amount compared to the Sun's light output, which is equivalent to about 4.5 Tg (4.5109 kg) of mass converted to energy every second!


Since solar wind is a plasma, it carries with it the Sun's magnetic field. Out to a distance of approximately 160 Gm (100,000,000 miles), the sun's rotation sweeps the solar wind into a spiral pattern by dragging its magnetic field lines with it, but beyond that distance solar wind moves outwards without much additional influence directly from the sun. Unusually energetic outbursts of solar wind caused by solar flares and other such solar weather phenomena are known as "solar storms" and can subject space probes and satellites to strong doses of radiation. Solar wind particles trapped in Earth's magnetic field tend to collect within the Van Allen radiation belts and can cause the Aurora borealis and the australis, when they impact with Earth's atmosphere near the poles. Other planets with magnetic fields similar to Earth's also have their own auroras.


The solar wind blows a "bubble" in the interstellar medium (the rarefied hydrogen and helium gas that permeates the galaxy). The point where the solar wind's strength is no longer great enough to push back the interstellar medium is known as the heliopause, and is often considered to be the outer "border" of the solar system. The distance to the heliopause is not precisely known, and probably varies widely depending on the current velocity of the solar wind and the local density of the interstellar medium, but it is known to lie far outside the orbit of Pluto.


References

  • http://news.nationalgeographic.com/news/2003/08/0827_030827_kyotoprizeparker.html

See also

magnetopause, magnetosphere, ionosphere, shock wave


  Results from FactBites:
 
Solar wind - Wikipedia, the free encyclopedia (2132 words)
In the heliosphere, the composition of the solar wind is identical to the Sun's corona: By mass, 73% ionized hydrogen and 25% doubly ionized helium with the remainder as trace impurities.
Outside the plane of the ecliptic the solar wind is steady and rapid, at speeds between 600-800 km/s; this is called the fast solar wind and it is known to emanate from solar coronal holes.
The solar wind blows a "bubble" in the interstellar medium (the rarefied hydrogen and helium gas that permeates the galaxy).
The Solar Wind (819 words)
The first indication that the sun might be emitting a "wind" came from comet tails, observed to point away from the Sun, whether the comet was approaching the Sun or whether it was moving away.
The distribution of ions in the solar wind generally resembles the distribution of elements on the Sun-- mostly protons, with 5% helium and smaller fractions of oxygen and other elements.
It is the IMF that allows the solar wind to "pick up" the ions in a comet's ion tail, as it also did to an "artificial comet" produced in a 1985 experiment (see positive ions, "clouds of barium ions").
  More results at FactBites »

 
 

COMMENTARY     


Share your thoughts, questions and commentary here
Your name
Your comments

Want to know more?
Search encyclopedia, statistics and forums:

 


Press Releases |  Feeds | Contact
The Wikipedia article included on this page is licensed under the GFDL.
Images may be subject to relevant owners' copyright.
All other elements are (c) copyright NationMaster.com 2003-5. All Rights Reserved.
Usage implies agreement with terms, 1022, m