FACTOID # 30: If Alaska were its own country, it would be the 26th largest in total area, slightly larger than Iran.
 
 Home   Encyclopedia   Statistics   States A-Z   Flags   Maps   FAQ   About 
   
 
WHAT'S NEW
 

SEARCH ALL

FACTS & STATISTICS    Advanced view

Search encyclopedia, statistics and forums:

 

 

(* = Graphable)

 

 


Encyclopedia > Steam locomotive
One of the last mainline steam locomotives built in the UK:
British Railways Standard Class 9F 2-10-0 no. 92214 (preserved) at Barrow Hill, October 10, 2004
Drawing of a Great Western Railway King class locomotive

A steam locomotive is a locomotive powered by a steam engine. The term usually refers to its use on railways, but can also refer to a "road locomotive" such as a traction engine or steamroller. ImageMetadata File history File links 92214_at_Barrow_Hill. ... ImageMetadata File history File links 92214_at_Barrow_Hill. ... British Railways (BR), later rebranded as British Rail, ran the British railway system, from the nationalisation of the Big Four British railway companies in 1948 until its privatisation in stages between 1994 and 1997. ... 92011 at New Basford 7 May 1966. ... This 2-10-0 steam locomotive is a Pennsylvania Railroad class I1s, the most successful class of such locomotives in North America. ... The Barrow Hill Engine Shed is a former Midland Railway roundhouse in Derbyshire. ... is the 283rd day of the year (284th in leap years) in the Gregorian calendar. ... Year 2004 (MMIV) was a leap year starting on Thursday of the Gregorian calendar. ... Image File history File links Size of this preview: 800 × 246 pixelsFull resolution‎ (3,336 × 1,026 pixels, file size: 376 KB, MIME type: image/jpeg) An AutoCAD 2D drawing of a Great Western King steam locomotive drawn by M Hobbs 19/09/2007 I, the copyright holder of this... Image File history File links Size of this preview: 800 × 246 pixelsFull resolution‎ (3,336 × 1,026 pixels, file size: 376 KB, MIME type: image/jpeg) An AutoCAD 2D drawing of a Great Western King steam locomotive drawn by M Hobbs 19/09/2007 I, the copyright holder of this... The original Bristol Temple Meads station, first terminus of the GWR, is the building to the left of this picture The Great Western Railway (GWR) was a British railway company, linking South West England, the West Country and South Wales with London. ... The Great Western Railway 6000 Class or King is a class of steam locomotive designed for express passenger work. ... Great Western Railway No. ... // The term steam engine may also refer to an entire railroad steam locomotive. ... This is the top-level page of WikiProject trains Rail tracks Rail transport refers to the land transport of passengers and goods along railways or railroads. ... // A traction engine (sometimes called a road locomotive) is a wheeled steam engine used to move heavy loads, plough ground or to provide power at a chosen location. ... This article is about the construction vehicle. ...


Steam locomotives dominated rail traction from the mid 19th century until the mid 20th century, after which they were superseded by diesel and electric locomotives. A modern Diesel locomotive. ... Modern AC locomotive (DBAG Class 152). ...

Contents

Origins

Trevithick's locomotive, 1804 the first successful steam locomotive
Trevithick's locomotive, 1804 the first successful steam locomotive
Stephenson's Rocket 1829, the winner of the Rainhill Trials
Stephenson's Rocket 1829, the winner of the Rainhill Trials

See also: History of rail transport, Category:Early steam locomotives Locomotive made by Richard Trevithick and Andrew Vivian (1801) File links The following pages link to this file: Andrew Vivian ... Locomotive made by Richard Trevithick and Andrew Vivian (1801) File links The following pages link to this file: Andrew Vivian ... Image File history File links Stephensons_Rocket_drawing. ... Image File history File links Stephensons_Rocket_drawing. ... Horse drawn railway coach, late 18th century Density of the railway net in Europe 1896 Main article: Rail transport The history of rail transport dates back nearly 500 years, and includes systems with man or horse power and rails of wood or stone. ...


The earliest railways employed horses to draw carts along railed tracks. Rail tracks. ...


As the development of steam engines progressed through the 1700s, various attempts were made to apply them to road and railway use.[1] The first attempts were made in Great Britain; the earliest steam rail locomotive was built in 1804 by Richard Trevithick and Andrew Vivian. It ran with mixed success on the narrow gauge "Penydarren tramroad" at Merthyr Tydfil in Wales.[1]. Then followed the successful twin cylinder locomotives built by Matthew Murray for the edge railed Middleton Railway in 1812. These early efforts culminated in 1829 with the Rainhill Trials and the opening of the Liverpool and Manchester Railway a year later making exclusive use of steam power for both passenger and freight trains. // The term steam engine may also refer to an entire railroad steam locomotive. ... Richard Trevithick Richard Trevithick (April 13, 1771 – April 22, 1833) was a Cornish inventor, mining engineer and builder of the first working railway steam locomotive. ... Andrew Vivian (1759-1842), Cornish mechanical engineer, inventor, and mine captain of the famous Dolcoath Silver Mine in Cornwall. ... A narrow gauge railway (or narrow gauge railroad) is a railway that has a track gauge narrower than the 1,435 mm (4 ft 8½ in) of standard gauge railways. ... Penydarren was the fourth of the great ironworks established at Merthyr Tydfil. ... Merthyr Tydfil (Welsh: ) is a town and county borough in Wales, with a population of about 55,000. ... This article is about the country. ... Matthew Murray was a steam engine and machine tool manufacturer, who designed and built the first commercially viable steam locomotive, the twin cylinder The Salamanca in 1812. ... // Wagonways are the horses, equipment, and tracks used for hauling wagons which preceded steam powered railways. ... The Middleton Steam Railway is the worlds oldest working railway. ... The Rainhill Trials were an important competition in the early days of steam locomotive railways, run in October of 1829 near Rainhill (just outside Liverpool). ... Inaugural journey of the Liverpool and Manchester Railway The Liverpool and Manchester Railway (L&MR) was the worlds first intercity passenger railway in which all the trains were timetabled and operated for most of the distance solely by steam locomotives. ...


Inspired by British success, the United States started developing steam locomotives in 1829 with the Baltimore and Ohio Railroad's Tom Thumb. This was the first locomotive to run in America, although it was intended as a demonstration of the potential of steam traction, rather than as a revenue-earning locomotive. The first successful steam railway in the US was the South Carolina Railroad whose inaugural train ran in December 1830 hauled by the Best Friend of Charleston. Many of the earliest locomotives for American railroads were imported from England, including the Stourbridge Lion and the John Bull, but a domestic locomotive manufacturing industry was quickly established, with locomotives like the DeWitt Clinton being built in the 1830s.[2] The Baltimore and Ohio Railroad (B&O) was one of the oldest railroads in the United States and the first common carrier railroad, with an original line from the port of Baltimore, Maryland, west to the Ohio River at Wheeling and a few years later also to Parkersburg, West Virginia. ... Tom Thumb was the first American-built steam locomotive used on a common-carrier railroad. ... In 1843, the South Carolina Canal and Railroad Company and the Louisville, Cincinnati and Charleston Railroad merged to form the South Carolina Railroad. ... The Best Friend of Charleston was a steam-powered railroad locomotive. ... The Stourbridge Lions first run, as depicted by Clyde Osmer DeLand c. ... The John Bull is an English-built railroad steam locomotive, operated for the first time on September 15, 1831; it became the oldest operable steam locomotive in the world (150 years) when the Smithsonian Institution operated it in 1981. ... Categories: Stub | Famous locomotives ...


Basic form

Scheme of steam locomotive. (see Steam locomotive components)
Scheme of steam locomotive. (see Steam locomotive components)

Image File history File links Download high-resolution version (1479x946, 198 KB) [edit] Description Object: Steam locomotive nomenclature Description: Author: Panther Created: 27 Aug 2005 Source: Drawn by Panther using Corel Draw! [edit] Licence File links The following pages on the English Wikipedia link to this file (pages on other... Image File history File links Download high-resolution version (1479x946, 198 KB) [edit] Description Object: Steam locomotive nomenclature Description: Author: Panther Created: 27 Aug 2005 Source: Drawn by Panther using Corel Draw! [edit] Licence File links The following pages on the English Wikipedia link to this file (pages on other... A listing of the components typically found on Steam locomotives. ...

Boiler

The typical steam locomotive employs a horizontal fire-tube boiler partially filled with water. A firebox, its walls and roof constantly surrounded by water, is incorporated generally to the rear of the boiler when the locomotive is travelling chimney-first; this is where a combustible is burnt, the heat generated thereby being transferred to the water in the boiler in order to make the steam that constitutes working medium. The combustion gases flow from the firebox into a bundle of parallel tubes, also surrounded by water, which continue to transfer heat to the water. At the front of the boiler is the smokebox, a chamber where the combustion gases are mixed with the jet of exhaust steam, the whole being ejected into a chimney (US: "smoke stack") voiding into the outside air. A fire-tube boiler is a type of boiler in which hot gases from the fire pass through one or more tubes within the boiler. ... Section of typical British boiler and firebox. ... The smokebox (outlined in red) of Soo Line 1003. ...


Steam circuit

The generated steam is stored in the steam space above the water in the partially-filled boiler. Its working pressure is limited by spring-loaded safety valves. It is then collected either in a perforated tube fitted above the water level or from a dome that often houses the regulator valve, or throttle, the purpose of which is to control the the amount of steam leaving the boiler. The steam then either travels directly along and down a steam pipe to the engine part or may have first to pass into the wet header of a superheater the role of which is to eliminate water droplets suspended in the "saturated steam", the state in which it leaves the boiler. On leaving the superheater, the "dried" steam exits the dry header of the superheater and passing down a steam pipe enters the steam chests adjacent to the cylinders of a reciprocating engine. Inside each steam chest is a sliding valve that distributes the steam via ports that connect the steam chest to the ends of the cylinder space. The role of the valves is twofold: admission of each fresh dose of steam and exhaust of the used steam once it has done its work. General arrangement of a superheater installation in a steam locomotive. ...


The cylinders are double acting, with steam admitted to each side of the piston in turn. In a two-cylinder locomotive, one cylinder is located on each side of the locomotive. The cranks are set 90° out of phase with each other. During a full rotation of the driving wheel, steam provides four power strokes per revolution; that is to say each cylinder receives two injections of steam. The first stroke is to the front of the piston and the second stroke to the rear of the piston; hence two working strokes. Consequently two deliveries of steam onto each piston face in two cylinders generates a full revolution of the driving wheel. The driving wheels are connected on each side by coupling rods (US: "connecting rods") to transmit power from the main driver to the other wheels. At the two "dead centres", when the connecting rod is on the same axis as the crankpin on the driving wheel, it will be noted that no turning force can be applied. If the locomotive were to come to rest in this position it would be impossible for it to move off again, so the cylinders and crankpins are arranged such that the dead centres occur out of phase with each other. This precaution is unnecessary on most other reciprocating engines (such as an internal combustion engine) which are never expected to start from rest under their own power, and employ a flywheel to overcome the dead centres. A coupling rod or side rod connects the driving wheels of a steam locomotive. ... US usage, a lathe center UK usage, in a reciprocating engine, the position of a piston in which it is furthest from, or nearest to, the crankshaft. ...


Each piston transmits power directly through a connecting rod (US: main rod) and a crankpin (US: wristpin) on the driving wheel (US "main driver) or to a crank on a driving axle. The movement of the valves in the steam chest is controlled through a set of rods and linkages called the valve gear, driven from the driving axle or else from the crankpin; the valve gear includes devices that combine the roles of reversing the engine and adjusting valve travel and the timing of of the admission and exhaust events. The cut-off point determines the the moment when the valve obturates a steam port, "cutting off" admission steam and thus determining the proportion of the stroke, during which steam is admitted into the cylinder; for example a 50% cut-off admits steam for half the stroke of the piston. The remainder of the stroke is driven by the expansive force of the steam. Careful use of cut-off provides economical use of steam and, in turn, reduces fuel and water consumption. The reversing lever (US: Johnson bar), or screw-reverser, (if so equipped) which controls the cut-off therefore performs a similar function to a gearshift in an automobile. For the American composer, see Walter Piston. ... piston (top) and connecting rod from typical automotive engine (scale is in centimetres) Components of a typical, four stroke cycle, DOHC piston engine. ... On a steam locomotive, a driving wheel is a powered wheel which is driven by the locomotives pistons (or turbine, in the case of a steam turbine locomotive). ... Look up crank in Wiktionary, the free dictionary. ... The Walschaert valve gear on a steam locomotive (a PRR E6s). ... A Johnson bar is a hand lever with several distinct positions and a positive clutch to hold the lever in the selected position. ... The gear shift is the part of the gearbox which has the shift forks and allows the contact from the driver to the synchronisation. ... Car redirects here. ...

Walschaerts valve gear in a steam locomotive. In this animation, the red colour represents live steam entering the cylinder, blue represents expanded (spent) steam being exhausted from the cylinder. Note that the cylinder receives two steam injections during each full rotation; the same occurs in the cylinder on the other side of the engine.
Walschaerts valve gear in a steam locomotive. In this animation, the red colour represents live steam entering the cylinder, blue represents expanded (spent) steam being exhausted from the cylinder. Note that the cylinder receives two steam injections during each full rotation; the same occurs in the cylinder on the other side of the engine.


Image File history File links Walschaerts_motion. ... The Walschaert valve gear on a Pennyslvania Railroad K4s. ... The bouncing ball animation (below) consists of these 6 frames. ... A Live Steam Festival displaying equipment ranging from small stationary engines to full-size locomotives. ...


Exhaust steam is directed upwards to the atmosphere through the chimney, by way of a nozzle called a blastpipe that gives rise to the familiar "chuffing" sound of the steam locomotive. The blastpipe is placed at a strategic point inside the smokebox that is at the same time traversed by the combustion gases drawn through the boiler and grate by the action of the blast. The combining of the two streams is crucial to the efficiency of any steam locomotive and the internal profiles of the chimney, (or more strictly speaking, the ejector) require careful design and adjustment. This has been the object of intensive studies by a number engineers (and almost totally ignored by others with sometimes catastrophic effect). The fact that the draught depends on the exhaust pressure means that power delivery and power generation are automatically self-adjusting and among other issues, a balance has to be struck between obtaining sufficient draught for combustion whilst giving the gases and particles sufficient time to be consumed. In the past, fierce draught could lift the fire off the grate, or cause the ejecting of unburnt particles leading to the dirt and pollution for which steam locomotives had an unenviable reputation in the past. Moreover, the pumping action of the exhaust has the counter effect of exerting back pressure on the side of the piston receiving steam, thus somewhat reducing cylinder power. Designing the exhaust ejector has become a specific science in which Chapelon, Giesl and Porta were successive masters, and was largely responsible for spectacular improvements in thermal efficiency but drastic reduction in maintenance time[3] and pollution. The blastpipe is part of a steam locomotive that discharges exhaust steam from the cylinders into the smokebox beneath the chimney in order to increase the draught of the fire. ...


Chassis

With European locomotives, the chassis is the principle structure onto which the boiler is mounted and which incorporates the various elements of the running gear.The chassis consists of two mainframes kept apart and square by spacers and “buffer beams”. For many years, in America practice , the boiler was the main structural element, with built-up bar frames, ‘’smokebox saddle/cylinder’’ structure and drag beam integrated therein; but from the late 1920s with the introduction of ‘’superpower’’, the ‘’cast-steel locomotive bed’’ became the norm, incorporating frames, spring hangers, motion brackets, smokebox saddle and cylinder blocks incorporated into a single complex, sturdy but heavy casting. André Chapelon developed a similar welded structure with around 30% saving in weight for the still-born 2-10-4 locomotives the construction of which was begun then abandoned in 1946.


Running gear

This includes the brake gear, wheel sets, axleboxes, springing and the "motion" that includes connecting rods and valve gear. The transmission of the power from the pistons to the rails and the behaviour of the locomotive as a vehicle, able to negotiate curves, points and irregularities in the track are issues of paramount importance. Because reciprocating power has to be directly applied to the rail from 0 rpm upwards, this poses unique problems of ‘’adhesion’’ of the driving wheels to the smooth rail surface. Adhesive weight is the portion of the locomotive’s weight bearing on the driving wheels. This is made more effective if pair of driving wheel is able to make the most of its ‘’axle load’’ i.e. its individual share of the adhesive weight. Locomotives with ‘’compensating levers’’ connecting the ends of plate springs have often been deemed a complication but locomotives fitted with them have usually been less prone to loss of traction due to wheel-slip.


Locomotives with total adhesion, i.e. where all the wheels are coupled together, generally lack stability at speed. This makes desirable the inclusion of unpowered carrying wheels mounted on two-wheeled trucks or 4-wheeled bogies centred by springs that help to guide the locomotive through curves. These usually take the weight of the cylinders in front or of the firebox at the rear end when the width of this exceeds that of the mainframes. For multiple coupled wheels on a rigid chassis a variety of systems for controlled side-play exist.


Fuel and water

Water gauge. Here the water in the boiler is at the “top nut”, the maximum working level.
Water gauge. Here the water in the boiler is at the “top nut”, the maximum working level.

Generally, the largest locomotives are permanently coupled to a tender that carries the water and fuel. Alternatively, locomotives working shorter distances carry the fuel in a bunker, and the water in tanks mounted on the engine, the latter placed either alongside the boiler or on top of it; these are called tank engines. Image File history File links Water_gauge_Chatfield. ... Image File history File links Water_gauge_Chatfield. ... A British tender locomotive Fuel tender from one of Union Pacifics turbines. ... A tank locomotive (occasionally tank engine, especially in England, notably used in reference to Thomas the Tank Engine) is a steam locomotive that carries its own fuel and water on it, instead of pulling it behind it in a tender. ...


The fuel source used depends on what is economically available locally to the railway. In the UK and parts of Europe, a plentiful supply of coal made this the obvious choice from the earliest days of the steam engine. German, Russian, Australian and British railways experimented using coal dust to fire locomotives. Up to around 1850 in the U.S.A the vast majority of locomotives burnt wood until most of the Eastern forests were cleared; from that time on coal burning became more widespread and wood burners were restricted to rural and logging districts. In Europe, this lasted well into the 20th century. Bagasse, a waste by-product of the refining process, was burned in sugar cane farming operations. In the USA, the ready availability of oil made this a popular steam locomotive fuel; the Southern Pacific, for example, went directly from wood to oil.[citation needed] equipment. In Victoria, Australia after World War II, many steam locomotives were converted to heavy oil firing. Coal Example chemical structure of coal Coal is a fossil fuel formed in ecosystems where plant remains were saved by water and mud from oxidization and biodegradation. ... Bagasse (sometimes spelled bagass) is the biomass remaining after sugarcane stalks are crushed to extract their juice. ... Species Ref: ITIS 42058 as of 2004-05-05 Sugarcane is one of six species of a tall tropical southeast Asian grass (Family Poaceae) having stout fibrous jointed stalks whose sap at one time was the primary source of sugar. ... Combatants Allied powers: China France Great Britain Soviet Union United States and others Axis powers: Germany Italy Japan and others Commanders Chiang Kai-shek Charles de Gaulle Winston Churchill Joseph Stalin Franklin Roosevelt Adolf Hitler Benito Mussolini Hideki Tōjō Casualties Military dead: 17,000,000 Civilian dead: 33,000...


A number of tourist lines and heritage locomotives in Switzerland, Argentina and Australia have been using light diesel-type oil.[4].


Water was supplied at stopping places and loco depots from a dedicated water tower connected to water cranes or gantries. In the UK and the USA, water troughs (US track pans) were provided on some main lines to allow locomotives to replenish their water supply without stopping. This was achieved by using a 'water scoop' fitted under the tender or the rear water tank in the case of a large tank engine; the fireman remotely lowered the scoop into the trough, the speed of the engine forced the water up into the tank, and the scoop was raised again once it was full. The mushroom-shaped concrete water tower of Roihuvuori in Helsinki, Finland was built in the 1970s. ... Water crane in Kladno, Czech Republic Water crane in Stützerbach, Germany Water crane is a device used for delivering a large volume of water into tank or tender of a steam locomotive. ... A track pan (US English) or water trough (Commonwealth English) is a long trough filled with water, lying along a stretch of railroad track between the rails. ...


Water is an essential element in the operation of a steam locomotive; because as Swengel argued:

it has the highest specific heat of any common substance; that is more thermal energy is stored by heating water to a given temperature than would be stored by heating an equal mass of steel or copper to the same temperature. In addition, the property of vapourising (forming steam) stores additional energy without increasing the temperature...water is a very satisfactory medium for converting thermal energy of fuel into mechanical energy

Swengel went on to note that "at low temperature and relatively low boiler outputs" good water and regular boiler washout was an acceptable practise, even though such maintenance was high. As steam pressures increased, however, a problem of "foaming" or "priming" developed in the boiler, wherein dissolved solids in the water formed "tough-skinned bubbles" inside the boiler, which in turn were carried into the steam pipes and could blow off the cylinder heads. To overcome the problem, hot mineral concentrated water was deliberately wasted (blowing down) from the boiler from time to time. Higher steam pressures required more blowing down of water out of the boiler. Oxygen generated by boiling water attacks the boiler and with increased steam pressures the rate of rust (iron oxide) generated inside the boiler increases. One way to help overcome the problem was water treatment. Swengel suggested that the problems around water, contributed to the interest in electrification of railways. [5]


In the 1970s L.D. Porta developed a sophisticated heavy duty chemical water treatment that not only keeps the inside of the boiler clean and prevents corrosion, but modifies the foam in such a way as to form a compact "blanket" on the water surface that filters the steam as it is produced, keeping it pure and preventing carry-over into the cylinders of water and suspended abrasive matter. Livio Dante Porta (March 21, 1922- June 10, 2003) was an Argentine steam locomotive engineer. ...


Crew

A locomotive is controlled from the backhead of the firebox and the crew is usually protected by a cab. A crew of at least two people is normally required to operate a steam locomotive. One, the driver (US: engineer), is responsible for controlling the locomotive and the fireman is responsible for the fire, steam pressure, and water. A railroad engineers workplace on a German ICE-Train A workplace in Rigi cogwheel electric train A railroad engineer, railway engineer, locomotive engineer, train operator, train driver or engine driver is a person who operates a railroad locomotive and train. ...


See also Category:locomotive parts


Fittings and appliances

All locomotives are fitted with a variety of appliances. Some of these relate directly to the operation of the steam engine; while others are for signalling, train control, or other purposes. In the United States the Federal Railroad Administration mandated the use of certain appliances over the years in response to safety issues. The most typical appliances are as follows: The Federal Railroad Administration (FRA) was created in 1966 as a division of the U.S. Department of Transportation to promote rail transportation and safety. ...


Steam pumps and injectors

Water must be forced into the boiler, to replace that which is exhausted after delivering a working stroke to the pistons. Early engines used pumps driven by the motion of the pistons. Later steam injectors replaced the pump, while some engines use turbopumps. Standard practice evolved to use two independent systems for feeding water to the boiler. Vertical glass tubes, known as water gauges or water glasses, show the level of water in the boiler. A Steam Injector A steam injector is a device used to feed water to a working steam boiler. ... A turbopump can refer to either of two types of pump. ... Water gauge on a steam locomotive. ...


Boiler lagging

Manometer-type pressure gauge mounted alongside the chimney of a replica of Stephenson's Rocket
Manometer-type pressure gauge mounted alongside the chimney of a replica of Stephenson's Rocket

Large amounts of heat are wasted if a boiler is not insulated. Early locomotives used shaped wooden battens fitted lengthways along the boiler barrel and held in place by metal bands. Improved insulating methods included: applying a thick paste containing a porous mineral, such as kieselgur or shaped blocks of insulating compound such as magnesia blocks[6] were attached. In the latter days of steam, "mattresses" of stitched asbestos cloth were fixed stuffed with asbestos fibre (but on separators so as not quite to touch the boiler); however in most countries, asbestos is nowadays banned for health reasons. The most common modern day material is glass wool, or wrappings of aluminium foil. Image File history File links Download high resolution version (960x1280, 193 KB) Summary (c) Chris Howells (user:Chowells) Replica Rocket. ... Image File history File links Download high resolution version (960x1280, 193 KB) Summary (c) Chris Howells (user:Chowells) Replica Rocket. ... The construction of manometer, construction elements are made of brass Many techniques have been developed for the measurement of pressure and vacuum. ... A contemporary drawing of Rocket Rocket as preserved in the Science Museum, London. ... A sample of diatomaceous earth Diatomaceous earth (IPA: , also known as DE, diatomite, diahydro, kieselguhr, kieselgur and Celite) is a naturally occurring, soft, chalk-like sedimentary rock that is easily crumbled into a fine white to off-white powder. ... For other uses, see Asbestos (disambiguation). ... Glass wool is similar to steel wool. ...


The lagging is protected by a close fitted sheet-metal casing[7] known as boiler clothing or cleading.


Effective lagging is particularly important for fireless locomotives; however in recent times under the influence of L.D. Porta, "exaggerated" insulation has been practised for all types of locomotive on all surfaces liable to dissipate heat, such as cylinder ends and facings between the cylinders and the mainframes. This considerably reduces engine warmup time with marked increase in overall efficiency. Preserved Porter Locomotive Company No. ...


Safety valves

Early locomotives were fitted with a valve controlled by a weight suspended from the end of a lever, the steam outlet being stopped by a cone-shaped valve. As there was nothing to prevent the weighted lever from bouncing when the locomotive ran over irregularities in the track, thus wasting steam, the weight was replaced by a more stable spring loaded column, often supplied by Salter, a well-known spring scale manufacturer. The danger of all these devices was that the driving crew could be tempted to add weight to the arm in order to increase pressure; most boilers were therefore from early times fitted with a tamper-proof "lockup" direct-loaded ball valve protected by a cowl. In the late 1850s, John Ramsbottom introduced an ingenious safety valve that became very popular in Britain during the latter part of the 19th Century. Not only was this valve tamper-proof, but any intervention on the part of the driver could only have the effect of easing pressure. Richardson's "pop" valve was an American invention introduced in 1867[8] and and was so designed as to release the steam only at the moment when the pressure attained the maximum permitted. This is pretty well the type universal today. The English [[Great Western Railway was a notable exception to this rule retaining the direct loaded type until the end of its separate existence because it was considered that such a valve lost less pressure between opening and closing. Spring scale. ... John Ramsbottom may refer to: John Ramsbottom (1814–1897), an English mechanical engineer who created many inventions for railways, John Ramsbottom (1885–1974), a British mycologist. ...


Pressure gauge

Pressure gauges on Blackmore Vale. The right-hand one shows boiler pressure, the one on the left steam chest pressure
Pressure gauges on Blackmore Vale. The right-hand one shows boiler pressure, the one on the left steam chest pressure

The earliest locomotives did not show the pressure of steam in the boiler, but it was possible to estimate this by the position of the safety valve arm which often extended onto the firebox back plate; gradations marked on the spring column gave a rough indication of the actual pressure. The promoters of the Rainhill trials urged that each contender have a proper mechanism for reading the boiler pressure and Stephenson devised a nine-foot vertical tube of mercury with a sight-glass at the top, mounted alongside the chimney, for the Rocket. The Bourdon tube gauge, in which the pressure straightens an oval-section, coiled tube of brass or bronze connected to a pointer, was introduced in 1849 and quickly gained acceptance. This is the device used today.[9] Some locomotives have an additional pressure gauge in the steam chest. This helps the driver avoid wheel-slip at startup, by warning if the regulator opening is too great. Image File history File linksMetadata Size of this preview: 800 × 600 pixelsFull resolution (1600 × 1200 pixel, file size: 277 KB, MIME type: image/jpeg) File history Legend: (cur) = this is the current file, (del) = delete this old version, (rev) = revert to this old version. ... Image File history File linksMetadata Size of this preview: 800 × 600 pixelsFull resolution (1600 × 1200 pixel, file size: 277 KB, MIME type: image/jpeg) File history Legend: (cur) = this is the current file, (del) = delete this old version, (rev) = revert to this old version. ... The SR West Country and Battle of Britain Classes, also known as Bulleid Light Pacifics or Spam Cans, are classes of streamlined 4-6-2 steam locomotive designed for the Southern Railway by Oliver Bulleid. ... The Rainhill Trials were an important competition in the early days of steam locomotive railways, run in October of 1829 near Rainhill (just outside Liverpool). ... George Stephenson George Stephenson For the British politician, see George Stevenson. ... A contemporary drawing of Rocket Rocket as preserved in the Science Museum, London. ... Bourdon Tube Type Indicator Side Mechanical Side Mechanical Details A pressure or vacuum gauge usually consists of a closed coiled tube (called a Bourdon tube) connected to the chamber or pipe in which pressure is to be sensed. ...


Spark arrestor and self cleaning smokebox

Typical self-cleaning smokebox design
Typical self-cleaning smokebox design

Wood-burners emit large quantities of flying sparks which necessitate an efficient spark arresting device generally mostly housed in the smokestack. Many types were fitted[10], the most common early type being the Bonnet stack that incorporated a cone-shaped deflector placed before the mouth of the chimney pipe plus a wire screen covering the wide stack exit; more efficient was the Radley and Hunter centrifugal type patented in 1850, (generally known as the diamond stack) incorporating baffles so orientated as to induce a swirl effect in the chamber that encouraged the embers to burn out and fall to the bottom as ash. In the self-cleaning smokebox the opposite effect was achieved: by allowing the flue gasses to strike a series of deflector plates, angled in such a way that the blast was not impaired, the larger particles were broken into small pieces that would be ejected with the blast, rather than settle in the bottom of the smokebox to be removed by hand at the end of the run. As with the arrestor, a screen was incorporated to retain any large embers.[11]


Locomotives of the British Railways standard classes fitted with self-cleaning smokeboxes were identified by a small cast oval plate marked "S.C.", fitted at the bottom of the smokebox door. These engines required different disposal procedures and the 'S.C.' plate highlighted this need to depot staff. The BR Standard steam locomotives were an effort to standardize locomotives from the motley collection from older locos. ...


Stokers

A factor that limits locomotive performance is the rate at which fuel is fed into the fire. In the early 20th century some locomotives became so large, that the fireman could not shovel coal fast enough.[7] In the United States, various steam-powered mechanical stokers became standard equipment and were adopted and used elsewhere including Australia and South Africa.


Feedwater heating

Introducing cold water into a boiler reduces power, and from the 1920s a variety of heaters were incorporated. The most common type for locomotives was the exhaust steam feedwater heater that piped some of the exhaust through small tanks mounted on top of the boiler or smokebox or else into the tender tank; the warm water then had to be delivered to the boiler by a small auxiliary steam pump. The rare economiser type differed in that it extracted residual heat from the exhaust gases. An example of this is the pre-heater drum(s) found on the Franco-Crosti boiler. A Feedwater heater is a power plant component used to pre-heat water delivered to the boiler. ... Schematic diagram of a Franco-Crosti boiler with single feedwater heater The Franco-Crosti boiler is a type of boiler used for steam locomotives. ...


The use of live steam and exhaust steam injectors also assists in the pre-heating of boiler feed water to a small degree, though there is no efficiency advantage to live steam injectors. Such pre-heating also reduces the thermal shock that a boiler might experience when cold water is introduced directly. This is further helped by the top feed where water is introduced to the highest part of the boiler and made to trickle over a series of trays. G.J. Churchward fitted this arrangement to the high end of his domeless coned boilers Other British lines such as the LBSCR fitted a few locomotives with the top feed inside a separate dome forward of the main one. George Jackson Churchward - Wikipedia /**/ @import /skins-1. ... The LB&SCRs coat of arms, displayed above the entrance to Gipsy Hill railway station. ...


Condensers and water re-supply

The conventional means of watering a locomotive was by refilling its tender or tank, from trackside water towers or standpipes.
The conventional means of watering a locomotive was by refilling its tender or tank, from trackside water towers or standpipes.

Steam locomotives consume vast quantities of water, and supplying this was a constant logistical problem. In some desert areas, condensing engines were devised. These engines had huge radiators in their tenders and instead of exhausting steam out of the funnel it was captured and passed back to the tender and condensed. The cylinder lubricating oil was removed from the exhausted steam to avoid a phenomenon known as priming, a condition caused by foaming in the boiler which would allow water to be carried into the cylinders causing damage because of its incompressibility. The most notable engines employing condensers (Class 25C) worked across the Karoo desert of South Africa, from the 1950 until the 1980s. Image File history File links Download high-resolution version (1024x683, 387 KB) [edit] Summary [edit] Licensing File links The following pages on the English Wikipedia link to this file (pages on other projects are not listed): Steam locomotive ... Image File history File links Download high-resolution version (1024x683, 387 KB) [edit] Summary [edit] Licensing File links The following pages on the English Wikipedia link to this file (pages on other projects are not listed): Steam locomotive ... The Karoo is a semi-desert region of South Africa. ...


Some British and American locomotives were equipped with scoops which collected water from "water troughs" (US: "track pans") while in motion, thus avoiding stops for water. In the US, small communities often did not have refilling facilities. During the early days of railroading, the crew simply stopped next to a stream and filled the tender using leather buckets. This was known as “jerking water” and led to the term "jerkwater towns" (meaning a small town, a term which today is considered derisive). [12] In Australia and South Africa, locomotives in drier regions operated with large oversized tenders and some even had an additional water wagon, sometimes called a "canteen" or in Australia (particularly in New South Wales) a "water gin". A track pan is a long trough filled with water, lying along a stretch of railroad track between the rails. ... A British tender locomotive Fuel tender from one of Union Pacifics turbines. ...


Steam locomotives working on underground railways (such as London's Metropolitan Railway) were fitted with condensing apparatus for a different, but obvious, reason. These were still being used between King's Cross and Moorgate into the early 1960s. The Metropolitan Line is a line of the London Underground. ... Steam locomotive condensing apparatus Differs in purpose from the usual closed cycle steam engine condenser, in that its function is primarily either to recover water, or to avoid excessive emissions to the atmosphere, rather than maintaining a vacuum to improve both efficiency and power. ... Kings Cross station (often spelt Kings Cross on platform signs) is a railway station in the district of the same name in northeast central London. ... Moorgate station is a London Underground and National Rail station in the City of London, on Moorgate, north of London Wall. ...


Braking

Locomotives have their own braking system, independent from the rest of the train. Locomotive brakes employ large shoes which press against the driving wheel treads. With the advent of air brakes, a separate system also allowed the driver to control the brakes on all cars. These systems require steam-powered pumps, which are mounted on the side of the boiler or on the smokebox front. Such systems operated in the United States, Canada and Australia. Piping diagram from 1920 of a Westinghouse E-T Air Brake system. ...


An alternative to the air brake is the vacuum brake. Where vacuum brakes are used, a steam-operated ejector is mounted on the engine instead of the air pump. A secondary ejector or crosshead vacuum pump is used to maintain the vacuum in the system. Vacuum systems existed on British, Indian and South African rail networks. The vacuum brake is a braking system used on trains. ... A copper aspirator. ...


Steam locomotives are nearly always fitted with sandboxes from which sand can be delivered to the rails to improve traction and braking in wet weather. On American locomotives the sandboxes, or sand domes, are usually mounted on top of the boiler. In Britain, the limited loading gauge precludes this, so the sandboxes are mounted just above, or just below, the running plate. A Sandbox is a container on most locomotives, or self propelled multiple units, that run on adhesion railways. ... Traction usually refers to friction between a drive member and the surface it runs on, where friction is used to provide motion. ... The size of tunnels dictates the maximum size of the trains. ...


Lubrication

“Wakefield” brand displacement lubricator mounted on a locomotive boiler backplate. Through the right-hand sight glass a drip of oil (travelling upwards through water) can be seen.

The pistons and valves on the earliest locomotives were lubricated by the enginemen dropping a lump of tallow down the blast pipe.[13] Image File history File links Wakefield_Lubricator. ... Image File history File links Wakefield_Lubricator. ... Lubrication occurs when opposing surfaces are separated by a lubricant film. ... Tallow is rendered beef or mutton fat, processed from suet. ... The blastpipe is part of a steam locomotive that discharges exhaust steam from the cylinders into the smokebox beneath the chimney in order to increase the draught of the fire. ...


As speeds and distances increased, mechanisms were developed that injected thick mineral oil into the steam supply. The first, a displacement lubricator, mounted in the cab, uses a controlled stream of steam condensing into a sealed container of oil. Water from the condensed steam displaces the oil into pipes. The apparatus is usually fitted with sight-glasses to confirm the rate of supply. A later method uses a mechanical pump worked from one of the crossheads. In both cases, the supply of oil is proportional to the speed of the locomotive. The displacement lubricator is an automatic oil lubricator for steam engines first introduced in the United Kingdom in 1860 by John Ramsbottom. ... A crosshead bearing (or simply crosshead) is used in large reciprocating engines, whether internal combustion engines or steam engines. ...

Big-end bearing (with connecting rod and coupling rod) of Blackmoor Vale showing pierced cork stoppers to oil reservoirs.
Big-end bearing (with connecting rod and coupling rod) of Blackmoor Vale showing pierced cork stoppers to oil reservoirs.

Lubricating the frame components (axle bearings, horn blocks and bogie pivots) depends on capillary action: trimmings of worsted yarn are trailed from oil reservoirs into pipes leading to the respective component.[11] The rate of oil supplied is controlled by the size of the bundle of yarn and not the speed of the locomotive, so it is necessary to remove the trimmings (which are mounted on wire) when stationary. However, at regular stops (such as a terminating station platform) oil finding its way onto the track can still be a problem. Image File history File linksMetadata Download high-resolution version (1078x804, 150 KB)Obtained from http://search. ... Image File history File linksMetadata Download high-resolution version (1078x804, 150 KB)Obtained from http://search. ... piston (top) and connecting rod from typical automotive engine (scale is in centimetres) Components of a typical, four stroke cycle, DOHC piston engine. ... A coupling rod or side rod connects the driving wheels of a steam locomotive. ... The SR West Country and Battle of Britain Classes, also known as Bulleid Light Pacifics or Spam Cans, are classes of streamlined 4-6-2 steam locomotive designed for the Southern Railway by Oliver Bulleid. ... Two rail welds in continuous welded rail in Wisconsin. ... A bogie is a wheeled wagon or trolley. ... Capillary Flow Experiment to investigate capillary flows and phenomena onboard the International Space Station Capillary action, capillarity, capillary motion, or wicking is the ability of a substance to draw another substance into it. ... Worsted is the name of a dick the cloth made from this yarn, as well as a yarn weight category. ...


Crank pin and crosshead bearings carry small cup-shaped reservoirs for oil. These have feed pipes to the bearing surface that start above the normal fill level, or are kept closed by a loose-fitting pin, so that only when the locomotive is in motion does oil enter. In United Kingdom practice the cups are closed with simple corks, but these have a piece of porous cane pushed through them to admit air. It is customary for a small capsule of pungent oil (aniseed or garlic) to be incorporated in the bearing metal to warn if the lubrication fails and excess heating or wear occurs.


Buffers

In British practice, the locomotive usually had buffers at each end to absorb compressive loads ("buffets"[14]). The tensional load of drawing the train (draft force) is carried by the coupling system. Together these control slack between the locomotive and train, absorb minor impacts, and provide a bearing point for pushing movements. The Buffer in railway transport is part of the coupling system for railway vehicles. ... Knuckle (AAR Type E) couplers in use AAR Type E railroad car coupling A coupling (or a coupler) is a mechanism for connecting railway cars in a train. ...


In American practice all of the forces between the locomotive and cars are handled through the coupler and its associated draft gear, which allows some limited slack movement. Small dimples called "poling pockets" at the front and rear corners of the locomotive allowed cars to be pushed on an adjacent track using a pole braced between the locomotive and the cars. Knuckle (AAR Type E) couplers in use AAR Type E railroad car coupling A coupling (or a coupler) is a mechanism for connecting railway cars in a train. ...


Pilots

In the United States, South Africa and Australia, locomotives had a pilot at the front end. Plow-shaped, and called cow catchers, they were quite large and were designed to remove obstacles from the track such as cattle, bison, other animals or tree limbs. Though unable to "catch" stray cattle these distinctive items remained on locomotives in those countries until the end of steam. Switching engines usually replaced the pilot with small steps. In places like Victoria, Australia, the cow catchers became a trade mark of that state's engines (Dee:1998). In railroading, the pilot is the device mounted at the front of a locomotive to deflect obstacles from the track that might otherwise derail the train. ... Leading truck and cowcatcher on the John Bull In railroading, the pilot is the device mounted at the front of a locomotive to deflect obstacles from the track that might otherwise derail the train. ...


Headlights

Preserved GWR locomotive Bradley Manor, until recently still used on Britain's national rail network. Between the two oil lamps signifying an express passenger service a high-intensity electric lamp has been added to comply with modern safety standards
Preserved GWR locomotive Bradley Manor, until recently still used on Britain's national rail network. Between the two oil lamps signifying an express passenger service a high-intensity electric lamp has been added to comply with modern safety standards

When night operations began, railway companies in some countries equipped their locomotives with lights to allow the driver to see what lay ahead of the train or to enable others to see the locomotive. Originally headlights were oil or acetylene lamps, but when electric lights became available in the late 1880s, they quickly replaced the older types. Image File history File links Metadata No higher resolution available. ... Image File history File links Metadata No higher resolution available. ... The original Bristol Temple Meads station, first terminus of the GWR, is the building to the left of this picture The Great Western Railway (GWR) was a British railway company, linking South West England, the West Country and South Wales with London. ... Acetylene (systematic name: ethyne) is a hydrocarbon belonging to the group of alkynes. ...


Britain used low intensity oil lamps and were not intended to allow the driver to see the way ahead (locomotive drivers were expected to have sufficient route knowledge) but were used to indicate the class of a train by their position on the front of the locomotive. Four lamp irons were provided: one below the chimney and three evenly spaced across the top of the buffer beam. The exception to this was the Southern Railway and its constituents, who added two lamp irons one each side of the smokebox, and the arrangement of lamps (or in daylight white circular plates) told railway staff the origin and destination of the train.


In some countries heritage steam operation continues on the national network. Some railway authorities have mandated powerful headlights on at all times, including during daylight. This was to further inform the public or track workers of any active trains.


Bells and whistles

Main article: Train whistle

Locomotives used bells and steam whistles from earliest days. In the United States and Canada bells warned of a train in motion. In Britain, where all lines are by law fenced throughout,[15] bells were only a requirement on railways running on a road (i.e. not fenced off), for example a tramway along the side of the road or in a dockyard. Consequently only a minority of locomotives in the UK carried bells. Whistles are used to signal personnel and give warnings. Depending on the terrain the locomotive was being used in the whistle could be designed for long distance warning of impending arrival, or more for localised use. Train whistle, (originally referred to as a steam trumpet), is an audible signaling device on a steam locomotive used to warn that the train is approaching, and to communicate with rail workers. ...


Early bells and whistles were sounded through pull-string cords and levers. As the steam era approached the 1950s, automatic air-operated bells were made use of on locomotives such as the Challenger (steam locomotive) and Big Boy. The name Big Boy has been applied to several different things: The Union Pacific Big Boy steam locomotive The Bobs Big Boy restaurant. ...


Automatic Train Control

From early in the twentieth century operating companies in such countries as Germany and Britain began to fit locomotives with in-cab signalling which automatically applied the brakes when a signal was passed at "caution". In Britain these became mandatory in 1956. The Automatic Warning System (AWS) refers to the specific form of limited cab signalling introduced in 1948 in the United Kingdom to help train drivers observe and obey warning signals, yellow or green. ...


Booster engines

In the United States and Australia the trailing truck was often equipped with an auxiliary steam engine which provided extra power for starting. This booster engine was set to cut out automatically at a certain speed. On the narrow gauged New Zealand railway system, six Kb 4-8-4 locomotives had boosters; the only 3 ft 6 in (metre gauge) engines in the world to have such equipment. Booster engine with the cover removed to show the mechanism. ...


Variations

Numerous variations to the simple locomotive occurred as railways attempted to develop more powerful, more efficient and fast steam locomotives.


Cylinders

Some locomotives received extra cylinders and experiments combined two locomotives in one (e.g. the Mallet and Garratt locomotives). Some locomotives carried their cylinders vertically alongside the boiler and drove the wheels through a system of shafts and gears (e.g. the Shay locomotive; see "geared steam locomotive"). A typical European Mallet type, a narrow gauge 0-4-4-2 tank locomotive for a mountain railway (in this case, the RhB in Switzerland). ... Garratt on the Welsh Higland Railway South African Garratt Diagram of a Garratt locomotive A Garratt is a type of steam locomotive that is articulated, normally in three parts. ... The Shay locomotive was the most widely used geared steam locomotive. ... A geared steam locomotive is a type of steam locomotive which uses reduction gearing in the drivetrain, as opposed to the common directly-driven design. ...


From about 1930, most new British express passenger locomotives were 4-6-0 or 4-6-2 types with three or four cylinders. Examples include:

5034 Corfe Castle fresh from Swindon Works, 1954. ... The London and North Eastern Railway (LNER) Class A1/A3 is a class of 4-6-2 steam locomotives, designed by Nigel Gresley. ...

Cab forward

In the United States on the Southern Pacific Railroad a series of cab forward locomotives had the cab and the firebox at the front of the locomotive and the tender behind the smokebox, so that the engine appeared to run backwards. This was only possible by using oil-firing. Southern Pacific selected this design to provide smoke-free breathing for the locomotive's engineer as they went through the SP's numerous mountain tunnels and snow sheds. Another variation was the Camelback locomotive with the cab half-way along the boiler. The Southern Pacific Railroad (AAR reporting marks SP) was an American railroad. ... This article needs to be wikified. ... The Erie Railroads L-1 class were the largest camelbacks built, and the only articulated examples. ...


Steam turbines

Steam turbines were one of the experiments in improving the operation and efficiency of steam locomotives. Experiments with steam turbines using direct-drive and electrical transmissions, in different countries, proved mostly unsuccessful.[7] The LMS also built Turbomotive, a largely successful attempt to prove the efficiency of steam turbines.[7] Had it not been for the outbreak of WW2, more may have been built. The Turbomotive ran from 1935-49, when it was rebuilt into a conventional locomotive because replacement of many parts was required, an uneconomical proposition for a 'one-off' locomotive. In the United States the Union Pacific, Chesapeake and Ohio, and Norfolk & Western railways all built turbine-electric locomotives. The Pennsylvania Railroad (PRR) also built turbine locos but with a direct-drive gearbox. However, all designs failed due to dust, vibration, design flaws, or inefficiency below speed. The last one in service was the N&W's being retired in January 1958. A steam turbine locomotive is a steam locomotive which transmits steam power to the wheels via a steam turbine. ... The London, Midland and Scottish Railway (LMS1) was a British railway company. ... The Turbomotive, with large forward turbine and smoke deflectors added during the war. ... The Union Pacific Railroad (NYSE: UNP) is the largest railroad in the United States. ... The Chesapeake and Ohio Railway (C&O) was a Class I railroad formed in 1869 in Virginia from many smaller railroads begun in the 19th century. ... Norfolk and Western Railway (AAR reporting mark: NW), a US class 1 railroad, was formed by more than 200 railroad mergers between 1838 and 1982. ... 1893 map The Pennsylvania Railroad (AAR reporting mark PRR) was an American railroad that was founded in 1846 and merged in 1968 into Penn Central Transportation. ...


Valve gear

Numerous technological advances improved the steam engine. Early locomotives used simple valve gear that gave full power in either forward or reverse.[9] Soon Stephenson valve gear allowed the driver to control cutoff; this was largely superseded by Walschaerts valve gear and similar patterns. Early locomotive designs using slide valves and outside admission were easy to construct, but inefficient and prone to wear.[9] Eventually, slide valves were superseded by inside admission piston valves, though there were attempts to apply poppet valves (common by then on stationary engines) in the 20th century. Stephenson valve gear was generally placed within the frame and was difficult to access for maintenance; later patterns applied outside the frame, were readily visible and maintained. Stephenson valve gear is the oldest and simplest standard design of steam locomotive valve gear. ... The Walschaert valve gear on a Pennyslvania Railroad K4s. ... The D Slide Valve was a form of rectilinear slide valve for use in rotative steam engines invented by William Murdoch and patented in 1799. ... Piston valve in a brass instrument A piston valve is a device used to control the motion of a fluid along a tube or pipe by means of the linear motion of a piston within a chamber or cylinder. ... A poppet valve is a valve consisting of a hole, usually round or oval, and a tapered plug, usually a disk shape on the end of a shaft also called a valve stem. ...


Compounding

From 1876, compound locomotives came on the scene, which used the engine's steam twice. There were many compound locomotives especially where long periods of continuous efforts were needed. Compounding was an essential ingredient of the quantum leap in power achieved by André Chapelon's rebuilds from 1929. A common application was to articulated locomotive, the most common being that of Anatole Mallet in which the high pressure stage was attached directly to the boiler frame; in front of this was pivoted a low pressure engine on its own frame, taking the the exhaust from the rear engine. [16] LMS Compound 4-4-0 41199 at Derby in 1948, recently outshopped with British Railways on her tender. ... Jules T. Anatole Mallet (23 May 1837 - 10 October 1919) was a Swiss mechanical engineer, who was the inventor of the Mallet locomotive. ...


Articulated and Duplex types

Articulation itself proved very popular, and there were numerous variations, both compound and simple. Duplex locomotives with two engines in one rigid frame were also tried, but were not notably successful.[citation needed] An articulated locomotive is a steam locomotive with one or more engine units which can move relative to the main frame. ... A duplex locomotive is a steam locomotive that divides the driving force on its wheels by using two pairs of cylinders. ...


Hybrid power

Mixed power locomotives, utilising steam and diesel propulsion, have been produced in Russia, Britain and Italy. A steam and diesel hybrid locomotive was a railway locomotive with a piston engine which could run on either steam from a boiler or diesel fuel. ...


Manufacture

United States

With the notable exception of the USRA standard locomotives, set during World War 1, in the United States, steam locomotive manufacture was always customised. Railroads ordered locomotives tailored to their specific requirements, though basic similarities were always present. Railroads developed specific characteristics; for example, the Pennsylvania Railroad had a preference for the Belpaire firebox,[17] while the Delaware and Hudson Railroad was famous for its elaborately flanged smokestacks.[citation needed] In the United States, specialised manufacturers constructed locomotives for all rail companies, although all railroads had shops capable of heavy repairs and some railroads (for example the Norfolk and Western Railway) constructed locomotives in their own shops. Companies Manufacturing locomotives in the US included Baldwin Locomotive Works, American Locomotive Works (ALCO), and others. It was not uncommon for an entire group of locomotives to be sold from one railroad to another.[citation needed] The USRA standard locomotives and railroad cars were designed by the United States Railroad Administration, the nationalised rail system of the United States during World War I. 1,856 steam locomotives and over 100,000 railroad cars were built to these designs during the USRAs tenure. ... 1893 map The Pennsylvania Railroad (AAR reporting mark PRR) was an American railroad that was founded in 1846 and merged in 1968 into Penn Central Transportation. ... A PRR N1s. ... The Delaware and Hudson Railroad (D&H) ( AAR reporting mark DH) was a Class I railroad in the north-eastern part of the United States. ... The Norfolk and Western Railway (N&W) (AAR reporting marks NW), a US class I railroad, was formed by more than 200 railroad mergers between 1838 and 1982. ...


Steam locomotives required regular service and overhaul (often at government-regulated intervals). Many alterations occurred during overhauls. New appliances were added, unsatisfactory features removed, cylinders improved or replaced. Any part of the locomotive, including boilers were replaced or upgraded. On the Baltimore and Ohio Railroad two 2-10-2 locomotives were dismantled; the boilers were placed onto two new Class T 4-8-2 locomotives and the residue wheel machinery made a pair of Class U 0-10-0 switchers with new boilers. Union Pacific's fleet of 3 cylinder 4-10-2 engines were converted into two cylinder engines in 1942, because of high maintenance problems. The Baltimore and Ohio Railroad (B&O) was one of the oldest railroads in the United States and the first common carrier railroad, with an original line from the port of Baltimore, Maryland, west to the Ohio River at Wheeling and a few years later also to Parkersburg, West Virginia. ... This 2-10-2 locomotive is a Pennsylvania Railroad class N1s. ... Union Pacific Railroad class MT-1 4-8-2 #7000. ... An 0-10-0 switcher of the Chesapeake & Ohio Railroad. ... Under the Whyte notation for the classification of steam locomotives, a 4-10-2 locomotive has four leading wheels, ten driving wheels and two trailing wheels. ...

Great Western Railway No. 6833 Calcot Grange, a 4-6-0 Grange class steam locomotive, at Bristol Temple Meads station, Bristol, England. Note the Belpaire (square-topped) firebox.
Great Western Railway No. 6833 Calcot Grange, a 4-6-0 Grange class steam locomotive, at Bristol Temple Meads station, Bristol, England. Note the Belpaire (square-topped) firebox.

Great Western Railway No. ... Great Western Railway No. ... The original Bristol Temple Meads station, first terminus of the GWR, is the building to the left of this picture The Great Western Railway (GWR) was a British railway company, linking South West England, the West Country and South Wales with London. ... A Finnish 4-6-0, built by Tampella in 1915 In the Whyte notation, a 4-6-0 is a railroad steam locomotive that has a two-axle leading truck followed by three driving axles. ... 6833 Calcot Grange at Bristol Temple Meads in British Railways green livery. ... The original station (left) closed in 1965. ... A PRR N1s. ...

United Kingdom

Before the 1923 Grouping, the picture in the UK was mixed. The larger railway companies built locomotives in their own workshops but the smaller ones and industrial concerns ordered them from outside builders. A large market for outside builders was abroad because of the home-build policy exercised by the main railway companies. This article does not cite any references or sources. ...


Between 1923 and 1947, the "Big Four" railway companies (the Great Western Railway, the London, Midland and Scottish Railway, the London and North Eastern Railway and the Southern Railway) all built most of their own locomotives. Generally speaking, they only bought locomotives from outside builders when their own works were fully occupied. From 1948, British Railways adopted the same policy and continued to build new steam locomotives until 1960 (the last being named Evening Star). The original Bristol Temple Meads station, first terminus of the GWR, is the building to the left of this picture The Great Western Railway (GWR) was a British railway company, linking South West England, the West Country and South Wales with London. ... The London, Midland and Scottish Railway (LMS1) was a British railway company. ... LNER timetable for Autumn 1926 detailing the resumption of services after the General Strike. ... The Southern Railway in the United Kingdom was the smallest of the four railway systems created in the Grouping ordered by the Railways Act 1921. ... British Railways (BR), later rebranded as British Rail, ran the British railway system, from the nationalisation of the Big Four British railway companies in 1948 until its privatisation in stages between 1994 and 1997. ... British Railways BR standard class 9F number 92220, named Evening Star, is a preserved British railway locomotive. ...


Some independent manufacturers produced steam locomotives for a few more years, the last British-built industrial steam locomotive being constructed by Hunslet in 1971. Since then, a few specialised manufacturers have continued to produce small locomotives for narrow gauge and miniature railways, but as the prime market for these is the tourist and heritage railway sector, the demand for such locomotives is limited. Irish Mail is typical of many small engines built at Hunslet for use in quarries The Hunslet Engine Company is a British locomotive-building company founded in 1864 at Jack Lane, Hunslet, Leeds, West Yorkshire, England by John Towlerton Leather, a civil engineering contractor, who appointed James Campbell (son of... A scene on a heritage railway. ...


Australia

In Australia, Clyde Engineering of Sydney and also the Eveleigh Workshops built steam locomotives for the New South Wales Government Railways. These include the C38 class 4-6-2, the first five were build at Clyde with streamlining, the other 25 locomotives were built at Eveleigh (13) in Sydney, and Cardiff Workshops (12) near Newcastle. In Queensland, steam locomotives were locally constructed by Walkers. Similarly the South Australian state government railways also manufactured steam locomotives locally at Islington in Adelaide. The Victorian Railways constructed most of their locomotives at their Newport Workshops and Bendigo while in the early days locomotives were built in Ballarat. Locomotives constructed at the Newport shops ranged from the nA class 2-6-2T built for the narrow gauge, up to the H class 4-8-4, the largest conventional locomotive ever to operate in Australia, which weighed 260 tons. However, the title of largest locomotive in Australia goes to the 263 ton NSWGR AD60 class 4-8-4+4-8-4 Garratt (Oberg:1975), which were built by Beyer-Peacock in the United Kingdom. This article is about the metropolitan area in Australia. ... Eveleigh is a suburb of the city of Sydney, New South Wales, Australia. ... After much discussion in the young colony of New South Wales, the Sydney Railway Company was incorporated on 10 October 1849 with the aim of building a railway from Sydney to Parramatta. ... Class leader 3801 - a streamlined example of the class The 38 class was the most popular type of steam locomotive built and operated by the New South Wales Government Railways in Australia. ... A streamliner is any vehicle that incorporates streamlining to produce a shape that provides less resistance to air, and is more pleasing to the eye. ... The Victorian Railways operated railways in the Australian state of Victoria from 1859 to 1983. ... For the electoral division in the Australian House of Representatives, see Division of Bendigo. ... A view of Ballarat East and Eureka from Sovereign Hill. ... A Pairie type built for the Burlington by Baldwin. ... The former Victorian Railways, the state railway authority in Victoria, Australia built a number of experimental narrow-gauge railway lines around the beginning of the 20th century. ... A 4-8-4+4-8-4, in the Whyte notation for the classification of steam locomotives by wheel arrangement, is a Garratt articulated locomotive. ... Garratt on the Welsh Higland Railway South African Garratt Diagram of a Garratt locomotive A Garratt is a type of steam locomotive that is articulated, normally in three parts. ... Beyer-Peacock Locomotive manufacturer with factory in Manchester from 1854 untill 1966. ...

Categorisation

The Gov. Stanford, a 4-4-0 (in Whyte notation) locomotive typical of 19th century American practice

Steam locomotives are categorised by their wheel arrangement. The two dominant systems for this are the Whyte notation and UIC classification. Image File history File links Size of this preview: 280 × 275 pixelsFull resolution (280 × 275 pixel, file size: 20 KB, MIME type: image/jpeg)Governor Stanford Central Pacific Railroad This image is in the public domain because its copyright has expired in the United States and those countries with a... Image File history File links Size of this preview: 280 × 275 pixelsFull resolution (280 × 275 pixel, file size: 20 KB, MIME type: image/jpeg)Governor Stanford Central Pacific Railroad This image is in the public domain because its copyright has expired in the United States and those countries with a... Atlantic, Mississippi and Ohio Railroad #87, delivered 1873-10-27 from the Mason Machine Works of Taunton, Massachusetts. ... A selection of early 20th century locomotive types according to their Whyte notation and their comparative size The Whyte notation for classifying steam locomotives by wheel arrangement was devised by Frederick Methvan Whyte and came into use in the early 20th century. ... A selection of early 20th century locomotive types according to their Whyte notation and their comparative size The Whyte notation for classifying steam locomotives by wheel arrangement was devised by Frederick Methvan Whyte and came into use in the early 20th century. ... The UIC classification is a comprehensive system for describing the wheel arrangement of locomotives. ...


The Whyte notation, used in most English speaking and Commonwealth countries, represents each set of wheels with a number. Different arrangements were given names which usually reflect the first usage of the arrangement; for instance the "Santa Fe" type (2-10-2) is so called because the first examples were built for the Atchison, Topeka and Santa Fe Railroad. These names were informally given and varied according to region and even politics. The Commonwealth of Nations as of 2007 Headquarters Marlborough House, London, UK Official languages English Membership 53 sovereign states Leaders  -  Queen Elizabeth II  -  Secretary-General Kamalesh Sharma Appointed 24 November 2007 Establishment  -  Balfour Declaration 18 November 1926   -  Statute of Westminster 11 December 1931   -  London Declaration 28 April 1949  Area  -  Total... This 2-10-2 locomotive is a Pennsylvania Railroad class N1s. ... The Atchison, Topeka and Santa Fe Railway (AAR reporting mark ATSF), often abbreviated as Santa Fe, was one of the largest railroads in the United States. ...


The UIC classification is used mostly in European countries apart from the United Kingdom. It designates consecutive pairs of wheels (informally "axles") with a number for non-driving wheels and a capital letter for driving wheels (A=1, B=2 etc). So a Whyte 4-6-2 designation would be an equivalent to a 2-C-1 UIC designation.


On many railroads, locomotives were organised into classes. These broadly represented locomotives which could be substituted for each other in service, but most commonly a class represented a single design. As a rule classes were assigned some sort of code, generally based on the wheel arrangement. Classes also commonly acquired nicknames representing notable (and sometimes uncomplimentary) features of the locomotives.[citation needed] Class (locomotive) refers to a group of locomotives built to a common design for a single railroad. ...

Performance

Measurement

In the steam locomotive era, two measures of locomotive performance were generally applied. At first, locomotives were rated by tractive effort This can be roughly calculated by multiplying the total piston area by 85% of the boiler pressure (a rule of thumb reflecting the slightly lower pressure in the steam chest above the cylinder) and dividing by the ratio of the driver diameter over the piston stroke. However, the precise formula is: Tractive Effort (abbr. ...


Tractive Effort is defined as the average force developed during one revolution of the driving wheels at the rail head.[18] This is expressed as:

t = frac {cPd^2s} {D}.

where d is bore of cylinder (diameter) in inches, s is cylinder stroke, in inches, P is boiler pressure in pound per square inch, D is driving wheel diameter in inches, c is the effective cutoff.[19] In a steam engine, cutoff is the early closing of the cylinder inlet valve, to increase efficiency. ...


It is critical to appreciate the use of the term 'average', as not all effort is constant during the one revolution of the drivers for at some points of the cycle only one piston is exerting turning moment and at other points both pistons are working. Not all boilers deliver full power at starting and also the tractive effort decreases as the rotating speed increases.[18]


Tractive effort is a measure of the heaviest load a locomotive can start or haul at very low speed over the ruling grade in a given territory.[18]


However, as the pressure grew to run faster freight and heavier passenger trains, tractive effort was seen to be an inadequate measure of performance because it did not take into account speed.


Therefore in the 20th century, locomotives began to be rated by power output. A variety of calculations and formulas were applied, but in general railroads used dynamometer cars to measure tractive force at speed in actual road testing. This measure was termed drawbar horsepower in the United States and remained the standard measure of performance to the end of mainline usage.[citation needed] The Southern Pacific Railroads dynamometer car #137, July 1937. ...


British railway companies have been reluctant to disclose figures for drawbar horsepower and have usually relied on continuous tractive effort instead. The continuous tractive effort is the highest force that a vehicle can exert over an extended period of time. ...


Relation to wheel arrangement

Whyte classification is connected to locomotive performance, but through a somewhat circuitous path. Given adequate proportions of the rest of the locomotive, power output is determined by the size of the fire, and for a bituminous coal-fuelled locomotive, this is determined by the grate area. Modern non-compound locomotives are typically able to produce about 40 drawbar horsepower per square foot of grate. Tractive force, as noted earlier, is largely determined by the boiler pressure, the cylinder proportions, and the size of the driving wheels. However, it is also limited by the weight on the driving wheels (termed adhesive weight), which needs to be at least four times the tractive effort.[7]


The weight of the locomotive is roughly proportional to the power output; the number of axles required is determined by this weight divided by the axleload limit for the trackage where the locomotive is to be used. The number of driving wheels is derived from the adhesive weight in the same manner, leaving the remaining axles to be accounted for by the leading and trailing bogies.[7] Passenger locomotives conventionally had two-axle leading bogies for better guidance at speed; on the other hand, the vast increase in the size of the grate and firebox in the 20th century meant that a trailing bogie was called upon to provide support. On the European continent, some use was made of several variants of the "Bissel-bogie" in which the swivelling movement of a single axle truck controls the lateral displacement of the front driving axle (and in one case the second axle too). This was mostly applied to 8-coupled express and mixed traffic locomotives and considerably improved their ability to negotiate curves whilst restricting overall locomotive wheelbase and maximising adhesion weight.


As a rule, "shunting engines" (US "switching engines") omitted leading and trailing bogies, both to maximise tractive effort available and to reduce wheelbase. Speed was unimportant; making the smallest engine (and therefore smallest fuel consumption) for the tractive effort paramount. Driving wheels were small and usually supported the firebox as well as the main section of the boiler. Banking engines (US "helper engines") tended to follow the principles of shunting engines, except that the wheelbase limitation did not apply, so banking engines tended to have more driving wheels. In the US, this process eventually resulted in the Mallet type with its many driven wheels, and these tended to acquire leading and then trailing bogies as guidance of the engine became more of an issue. The lickey banker 58100 Big Bertha assisting an express up the Lickey, July or August 1955. ... A typical European Mallet type, a narrow gauge 0-4-4-2 tank locomotive for a mountain railway (in this case, the RhB in Switzerland). ...


As locomotive types began to diverge in the late 1800s, freight engine designs at first emphasised tractive effort, whereas those for passenger engines emphasised speed. Over time, freight locomotive size increased, and the overall number of axles increased accordingly; the leading bogie was usually a single axle, but a trailing truck was added to larger locomotives to support a larger firebox that could no longer fit between or above the driving wheels. Passenger locomotives had leading bogies with two axles, fewer driving axles, and very large driving wheels in order to limit the speed at which the reciprocating parts had to move.


In the 1920s the focus in the United States turned to horsepower, epitomised by the "super power" concept promoted by the Lima Locomotive Works, although tractive effort was still the prime consideration after World War One to the end of steam. Freight trains were to run faster; passenger locomotives needed to pull heavier loads at speed. In essence, the size of grate and firebox increased without changes to the remainder of the locomotive, requiring the addition of a second axle to the trailing truck. Freight 2-8-2s became 2-8-4s while 2-10-2s became 2-10-4s. Similarly, passenger 4-6-2s became 4-6-4s. In the United States this led to a convergence on the dual-purpose 4-8-4 and the 4-6-6-4 articulated configuration, which was used for both freight and passenger service.[20] Mallet locomotives went through a similar transformation and evolved from bank engines into huge mainline locomotives with gargantuan fireboxes; their driving wheels being increased in size in order to allow faster running. Lima builders plate, 1918 Concept for a Lima Shay Museum in Lima, Ohio, 2005 Site for Lima Shay Museum Concept, 2005 Lima Locomotive Works was an American firm that manufactured railroad locomotives from the 1870s through the 1950s. ... PRR 520, on display at the Pennsylvania Railroad Museum, Strasburg, Pennsylvania, in 1993. ... In the Whyte notation, a 2-8-4 is a railroad steam locomotive that has one unpowered leading axle followed by four powered driving axles and two unpowered trailing axles. ... This 2-10-2 locomotive is a Pennsylvania Railroad class N1s. ... ATSF 2-10-4 #5000 Madame Queen awaiting an eastbound train at Ricardo, New Mexico in March, 1943. ... The Pennsylvania Railroads class K4s, a well known 4-6-2 type. ... A 4-6-4 locomotive, in the Whyte notation for the classification of steam locomotives, has four leading wheels (generally arranged in a leading truck), six coupled driving wheels and four trailing wheels (often but not always in a trailing truck). ... The Norfolk & Western Railways Class J locomotive #611, a 1950 product of the railroads own Roanoke, Virginia shops. ...


The end of steam

The introduction of electric locomotives at the turn of the 20th century spelled the beginning of the end for steam locomotives, although that end was long in coming. As Diesel power, more especially with electric transmission, became more reliable in the 1930s it gained a foothold in North America [21]. The full changeover took place there during the 1950s. In continental Europe large-scale electrification had displaced steam power by the 1970s, Steam had in its favour familiar technology and adapted well to local facilities and consume a wide variety of fuels; this led to its continued use in many countries to the end of the 20th Century. They have considerably less thermal efficiency than modern diesels, requiring constant maintenance and labour to keep them operational. Water is required at many points throughout a rail network and becomes a major problem in desert areas, as are found in some regions within the United States, Australia and South Africa. In other localities the local water is unsuitable. The reciprocating mechanism on the driving wheels of a two-cylinder single expansion steam locomotive tended to pound the rails (see "hammer blow"), thus requiring more maintenance. Raising steam from coal was a matter of hours steam raising which brought serious pollution problems; coal-burning around depots; coal burning locomotives required fire cleaning and ash removal between turns of duty. This was all done in the open air by hand in deplorable working conditions. Diesel or electric locomotives, by comparison, drew benefit from new custom built servicing facilities. Finally, the smoke from steam locomotives was deemed objectionable; in fact, the first electric and diesel locomotives were developed to meet smoke abatement requirements[22] although this did not take into account the high level of invisible pollution in diesel exhaust smoke especially when idling. It should also be remembered that the power for most electric trains is, in fact, derived from steam, generated in a power station. Modern AC locomotive (DBAG Class 152). ... Hammer blow, in rail terminology, refers to the forces transferred to the track by the driving wheels of a steam locomotive. ... Maintenance of way (often abbreviated as M of Way, MOW or MW) refers to the maintenance of railroad rights of way. ...


United States

Northwestern Steel and Wire locomotive number 80, July 1964

Mainline diesel-electric locomotives first appeared on the Baltimore and Ohio Railroad, in 1935 as locomotive No. 50. The diesel reduced maintenance costs dramatically, while increasing locomotive availability. On the Chicago, Rock Island and Pacific Railroad the new units delivered over 350,000 miles (560,000 km) a year, compared with about 120,000–150,000 for a mainline steam locomotive.[7] World War II delayed dieselisation in the U.S.A, but the pace picked up in the 1950s. Among large railroads, the Alabama, Tennessee and Northern Railroad; and the Western Pacific Railroad were among the first to completely retire steam power. By 1960, the last American Class I holdout, the Norfolk and Western Railway, discontinued steam operations. Some U.S. shortlines continued steam operations into the 1960s, and the Northwestern Steel and Wire mill in Sterling, IL, continued to operate steam locomotives until December 1980.[23] The Baltimore and Ohio Railroad (B&O) was one of the oldest railroads in the United States and the first common carrier railroad, with an original line from the port of Baltimore, Maryland, west to the Ohio River at Wheeling and a few years later also to Parkersburg, West Virginia. ... The Chicago, Rock Island and Pacific Railroad (AAR reporting mark RI) was a Class I railroad in the United States. ... Combatants Allied powers: China France Great Britain Soviet Union United States and others Axis powers: Germany Italy Japan and others Commanders Chiang Kai-shek Charles de Gaulle Winston Churchill Joseph Stalin Franklin Roosevelt Adolf Hitler Benito Mussolini Hideki Tōjō Casualties Military dead: 17,000,000 Civilian dead: 33,000... The Alabama, Tennessee and Northern Railroad (AAR reporting mark ATN) was a short line railroad operating within the state of Alabama. ... Drumhead logos such as these often adorned the ends of observation cars on the Western Pacific Railroad. ... A Class I railroad in the United States, or a Class I railway (also Class I rail carrier) in Canada, is one of the largest freight railroads, as classified based on operating revenue. ... The Norfolk and Western Railway (N&W) (AAR reporting marks NW), a US class I railroad, was formed by more than 200 railroad mergers between 1838 and 1982. ... Northwestern Steel and Wire was a steel mill and wire factory located in Sterling, Illinois. ...

United Kingdom

Trials of diesel locomotives and railcars began in the United Kingdom in the 1930s but made only limited progress. One problem was that British diesel locomotives were often seriously under-powered, compared with the steam locomotives against which they were competing. A railcar (not to be confused with a railway car) is a self-propelled railway vehicle designed to transport passengers. ...


After 1945, problems associated with post-war reconstruction and the availability of cheap domestic-produced coal kept steam in widespread use throughout the two following decades. However the ready availability of cheap oil led to new dieselisation programmes from 1955 and these began to take full effect from around 1962. Towards the end of the steam era, which came about in 1968, steam motive power was allowed to fall into a dire state of repair; this along with the absence of attention given to the attendant staff working conditions could only accelerate the decline to such a degree that British Railways estimated that its steam locomotives accounted for around four times more in running costs than diesels.[citation needed] The use of steam locomotives in British industry continued on an ever-reducing scale into the late 1970s[citation needed], but the poor availability of replacement parts, coupled with the decline of the coal mining industry, led to the disappearance of steam power for commercial uses.


South Korea

In South Korea, the first steam locomotive was the Moga 2-6-0, followed by; Sata, Pureo, Ame, Sig, Mika, Pasi, Hyeogi, Class 901, Mateo, Sori, and Tou. Used until 1967, that train is now in the Railroad Museum.


Other countries

In other countries, the conversion from steam was slower. By March 1973 in Australia, steam had vanished in all states. Diesel locomotives were more efficient and the demand for manual labour to service and repairs was less than steam. Cheap oil had cost advantages over coal.


In the USSR, the last steam locomotive (model П36, serial number 251) was built in 1956; now in the Museum of Railway Machinery at former Warsaw Rail Terminal, Saint Petersburg, Russia. In the European part of the USSR, almost all steam locomotives were replaced by diesel and electrical ones in 1960s; in Siberia with its cheap coal, steam locomotives were in active use till mid-1970s. However, some photographs exist of Russian steam locomotives at work into the 1980s, and many accurate historical records state that Russian Decapods, L-class 2-10-0s, and LV-class 2-10-2s were retired between 1980-1985, implying that the best of Russian steam, such as the P36 class, remained on the active rosters into the 1990s. Until 1994, Russia had at least 1,000 steam locomotives stored in operable condition in case of "national emergencies" - as a result, more than 200 steam locomotives are still in working condition.[citation needed] State motto (Russian): Пролетарии всех стран, соединяйтесь! (Transliterated: Proletarii vsekh stran, soedinyaytes!) (Translated: Workers of the world, unite!) Capital Moscow Official language None; Russian (de facto) Government Federation of Soviet republics Area  - Total  - % water 1st before collapse 22,402,200 km² Approx. ... Warsaw Railway Station prior to the Russian Revolution. ... Saint Petersburg (Russian: Санкт-Петербу́рг, English transliteration: Sankt-Peterburg), colloquially known as Питер (transliterated Piter), formerly known as Leningrad (Ленингра́д, 1924–1991) and Petrograd (Петрогра́д, 1914–1924), is a city located in Northwestern Russia on the delta of the river Neva at the east end of the Gulf of Finland... This article is about Siberia as a whole. ...


In Finland, the first diesels were introduced in the mid-1950s and they superseded the steam locomotives during the early '60s. The State Railways (VR) operated steam locomotives until 1975. VR or VR Group (VR-Yhtymä) is a state-owned railway company in Finland, and formerly known as Suomen Valtion Rautatiet (Finnish State Railways) until 1922 and Valtionrautatiet (State Railways) until 1995. ...


In Poland, on non-electrified tracks steam locomotives were superseded almost entirely by diesels by the early '90s. A few steam locomotives, however, operate still from Wolsztyn. Although they are maintained operational rather as a means of preserving railway heritage and as a tourist attraction, they do haul regular scheduled trains (mostly to Poznań). Apart from that, numerous railway museums and heritage railways (mostly narrow gauge) own steam locomotives in working condition. Wolsztyn [] is a town in central Poland, situated (since 1999) in the Greater Poland Voivodship, previously (1975-1998) in Poznan Voivodship. ... Coordinates: , Country Voivodeship Powiat city county Gmina PoznaÅ„ Established 8th century City Rights 1253 Government  - Mayor Ryszard Grobelny Area  - City 261. ... Narrow-gauge railways are railroads (railways) with track spaced at less than the standard gauge of 4 ft 8 in (1. ...


In South Africa an oil embargo combined with an abundance of cheap local coal and a cheap labour force, ensured steam locomotives survived into the 1990s.[citation needed] Locomotive engineer L. D. Porta's designs appeared on a Class 19D engine in 1979, then a former Class 25 4-8-4 engine, became a Class 26, termed the "Red Devil" No. 3450, which demonstrated an improved overall performance with decreased coal and water consumption. The single class 26 locomotive operated until the end of steam. Another class 25NC locomotive, No. 3454, nicknamed the "Blue Devil" because of its colour scheme, received modifications including a most obvious set of double side-by-side exhaust stacks. In southern Natal, two former South African Railway 2 ft (610 mm) gauge NGG16 Garratts operating on the privatised Port Shepstone & Alfred County Railway (ACR) received some L. D. Porta modifications in 1990 becoming a new NGG16A class.[24] For delayed access after publication, see Embargo (academic publishing). ... Livio Dante Porta (March 21, 1922- June 10, 2003) was an Argentine steam locomotive engineer. ...


China continued to build mainline steam locomotives until late in the century, even building a few examples for American tourist operations. Since China was the last main-line user of steam locomotives, ending officially at the beginning of 2006, it is plausible that many still exist in industrial operations or in more remote parts of China. Many coal mines and smaller cities, such as Pingdingshan and Hegang, maintain an active roster of JS, SY, or QJ steam locomotives bought secondhand from China Rail. The last steam locomotives built in China were of the SY 2-8-2 class, built until 1999.[citation needed] The last steam locomotive built in China was SY 1772, finished in 1999. As of 2007, at least four Chinese steam locomotives exist in the United States - 2 QJ's bought by RDC, a JS bought by the Boone Scenic Railway, and an SY bought by the NYSW for tourist operations, but re-painted and modified to represent a 1920s era US locomotive.


Hopes of revival

Dramatic increases in the cost of diesel fuel prompted several initiatives to revive steam power.[25][26] None of these has progressed to the point of production, and in the early 21st century, the steam locomotives operate only in a few isolated regions and in tourist operations. A scene on a heritage railway. ...


In Germany a small number of fireless steam locomotives are still working in industrial service, e.g. at power stations. Preserved Porter Locomotive Company No. ...


The Swiss company Dampflokomotiv und Maschinenfabrik DLM AG delivered several new steam locomotives to rack railways in Switzerland and Austria between 1992 and 1996. One was the Brienz Rothorn Bahn. Rack railway track using Von Roll system rack. ... The Brienz Rothorn Bahn (BRB) is a tourist rack railway in Switzerland, which climbs from Brienz to the summit of the Brienzer Rothorn mountain. ...


References

  1. ^ a b Payton, Philip (2004). Oxford Dictionary of National Biography. Oxford University Press. 
  2. ^ Hamilton Ellis (1968). The Pictorial Encyclopedia of Railways. The Hamlyn Publishing Group, pp.24-30. 
  3. ^ See section of the LNER Class A1/A3 article on the sharp increase in availability brought about in this respect by the application of the KYLCHAP exhaust to Gresley pacifics in the early 1960s
  4. ^ West Coast and R711
  5. ^ Swengel p. 146.
  6. ^ Scott, Ron; GN Large Atlantics (Profile Publications Berks UK - no date), p.129
  7. ^ a b c d e f g Bell, A Morton (1950): Locomotives, seventh edition. Virtue & Co Ltd, London.
  8. ^ White, John H. Jr.: A history of the American locomotive, its development: 1830-1880 (John Hopkins Press, Baltimore, USA 1968, Reprint: Dover Publications, New York 1979 pp. 146-149
  9. ^ a b c Snell, John B (1971): Mechanical Engineering: Railways. Longman, London.
  10. ^ White, J ibid pp. 114-124
  11. ^ a b Unknown author (1957): Handbook for Railway Steam Locomotive Enginemen. British Transport Commission.
  12. ^ Cass City Chronicle, Friday, July 29, 1938, page 3. Accessed 26 September 2007.
  13. ^ U.S. National Parks Service online history resource: Pennsylvania Railroad chemical laboratory. Accessed 9 November 2006.
  14. ^ Oxford English Dictionary: Buff 1
  15. ^ Section 10, Railway Regulation Act, 1842. Her Majesty's Stationery Office.
  16. ^ Van Riemsdijk, John T.: Compound locomotives, an international survey (Atlantic Transport Publishers, Penryn, England, 1994 ISBN 0 906899 61 3
  17. ^ Pennsylvania Railroad locomotive [email protected]
  18. ^ a b c Swengel, Frank M (1967). The American Steam Locomotive, Vol.1, The Evolution of the Steam Locomotive. Davenport, IA: MidWest Rail Publications. 
  19. ^ Adams, Henry (1908). Cassell's Engineer's Handbook. London: Cassell and Company, p389. 
  20. ^ Allen, Cecil J (1949): Locomotive Practice and Performance in the Twentieth Century. W Heffer and Sons Ltd, Cambridge, England.
  21. ^ 1935 article on the advantages of diesel locomotives.
  22. ^ Diesel Traction Manual for Enginemen, 15-16. British Transport Commission, 1962.
  23. ^ Last locomotive to operate in the United States Library Service of Northern Illinois University, accessed 2007-11-05
  24. ^ VidRail Productions, South African end of Steam: Orange Free State, Part 4, Vols. 3, 4 and 5 and Natal, Part 3, Vol. 1, in The Best of Southern African Steam, 1983-1990
  25. ^ The 5AT project to develop a modern steam locomotive for British railways.
  26. ^ Railway Extension Across the Andes: reactivation and modernisation of existing fleet of 75 cm gauge 2-10-2 steam locomotives.

The London and North Eastern Railway (LNER) Class A1/A3 is a class of 4-6-2 steam locomotives, designed by Nigel Gresley. ... The Oxford English Dictionary print set The Oxford English Dictionary (OED) is a dictionary published by the Oxford University Press (OUP), and is the most successful dictionary of the English language, (not to be confused with the one-volume Oxford Dictionary of English, formerly New Oxford Dictionary of English, of... Year 2007 (MMVII) is the current year, a common year starting on Monday of the Gregorian calendar and the AD/CE era in the 21st century. ... is the 309th day of the year (310th in leap years) in the Gregorian calendar. ...

See also

Manufacturers // The term steam engine may also refer to an entire railroad steam locomotive. ... Great Western Railway No. ... Horse drawn railway coach, late 18th century Density of the railway net in Europe 1896 Main article: Rail transport The history of rail transport dates back nearly 500 years, and includes systems with man or horse power and rails of wood or stone. ... A geared steam locomotive is a type of steam locomotive which uses reduction gearing in the drivetrain, as opposed to the common directly-driven design. ... A high pressure steam locomotive is a steam locomotive with a boiler that operates at pressures well above what would be considered normal. ... A steam turbine locomotive is a steam locomotive which transmits steam power to the wheels via a steam turbine. ... A steam dummy or dummy engine, in the United States of America, was a steam engine enclosed in a wooden box structure made to resemble a railroad passenger coach. ... List of heritage railways is a comprehensive listing of heritage railways. ... A Live Steam Festival displaying equipment ranging from small stationary engines to full-size locomotives. ... A listing of the components typically found on Steam locomotives. ... // A fire-tube boiler is a type of boiler in which hot gases from the fire pass through one or more tubes within the boiler. ... // Early 20th Century locomotive production in the USA included units made for both domestic and export markets. ... Niagara #6015 in Indianapolis, Indiana, June 30, 1956. ... A contemporary drawing of Rocket Rocket as preserved in the Science Museum, London. ... Lion was steamed as part of the Rainhill Trials 150th anniversary calvacade in May 1980. ... The John Bull is an English-built railroad steam locomotive, operated for the first time on September 15, 1831; it became the oldest operable steam locomotive in the world (150 years) when the Smithsonian Institution operated it in 1981. ... Locomotion No. ... Contemporary drawing of Novelty Novelty was an early steam locomotive built by John Ericsson and John Braithwaite to take part in the Rainhill Trials. ... This article does not cite its references or sources. ... Locomotive Mileniwm hauling a train out of Caernarfon station December 28, 2004 A Garratt is a type of steam locomotive that is articulated, normally in three parts. ...

Beyer-Peacock Locomotive manufacturer with factory in Manchester from 1854 untill 1966. ... Neilson and Company was a locomotive manufacturer in Glasgow, Scotland. ...

External links

Wikimedia Commons has media related to:
Steam locomotives

Image File history File links Commons-logo. ...

Books on steam locomotives

  • C. E. Wolff, Modern Locomotive Practice: A Treatise on the Design, Construction, and Working of Steam Locomotives (Manchester, England, 1903)
  • Henry Greenly, Model Locomotive (New York, 1905)
  • G. R. Henderson, Cost of Locomotive Operation (New York, 1906)
  • W. E. Dalby, Economical Working of Locomotives (London, 1906)
  • A. I. Taylor, Modern British Locomotives (New York, 1907)
  • E. L. Ahrons, The Development of British Locomotive Design (London, 1914)
  • E. L. Ahrons, Steam Engine Construction and Maintenance (London, 1921)
  • J. F. Gairns, Locomotive Compounding and Superheating (Philadelphia, 1907)
  • Angus Sinclair, Development of the Locomotive Engine (New York, 1907)
  • Vaughn Pendred, The Railway Locomotive, What it is and Why it is What it is (London, 1908)
  • Brosius and Koch, Die Schule des Lokomotivführers (thirteenth edition, three volumes, Wiesbaden, 1909-1914)
  • G. L. Fowler, Locomotive Breakdowns, Emergencies, and their Remedies (seventh edition, New York, 1911)
  • Fisher and Williams, Pocket Edition of Locomotive Engineering (Chicago, 1911)
  • T. A. Annis, Modern Locomotives (Adrian Michigan, 1912)
  • C. E. Allen, Modern Locomotive (Cambridge, England, 1912)
  • W. G. Knight, Practical Questions on Locomotive Operating (Boston, 1913)
  • G. R. Henderson, Recent Development of the Locomotive (Philadelphia, 1913)
  • Wright and Swift (editors) Locomotive Dictionary (third edition, Philadelphia, 1913)
  • Roberts and Smith, Practical Locomotive Operating (Philadelphia, 1913)
  • E. Prothero, Railways of the World (New York, 1914)
  • M. M. Kirkman, The Locomotive (Chicago, 1914)
  • C. L. Dickerson, The Locomotive and Things You Should Know About it (Clinton, Illinois, 1914)
  • P. W. B. Semmens, A. J. Goldfinch, How Steam Locomotives Really Work (Oxford University Press, USA, 2004) ISBN 0-19-860782-2
  • Gerald A Dee, A Lifetime of Railway Photography in Photographer Profile, Train Hobby Publications, Studfield, 1998. (Australian steam)
  • Leon Oberg, Locomotives of Australia, Reed, Sydney, 1975.
  • Swengel, F. M. The American Steam Locomotive; Vol. 1. The Evolution of the American Steam Locomotive, Midwest Rail Publication, Iowa, 1967.

Marshall Monroe Kirkman (1842-1921) was an American authority on railways, born in Illinois. ...


  Results from FactBites:
 
Locomotive - Wikipedia, the free encyclopedia (2445 words)
Steam locomotives are less efficient than their more modern diesel and electric counterparts and require much greater manpower to operate and service.
Steam locomotives were in regular use until 2004 in China, where coal is a much more abundant resource than petroleum for diesel fuel.
Steam locomotives built for steep rack and pinion railways frequently have the boiler tilted relative to the wheels, so that the boiler remains roughly level on steep climbs.
steam: Definition, Synonyms and Much More from Answers.com (1350 words)
In nature, steam is produced by the heating of underground water by volcanic processes and is emitted from hot springs, geysers, fumaroles, and some volcanoes.
Steam is a capacious reservoir for energy because of water's high heat of vaporization.
Condensation of steam to water often occurs at the low-pressure end of a steam turbine, since this maximises the energy efficiency, but such wet-steam conditions have to be carefully controlled to avoid excessive blade erosion.
  More results at FactBites »

 
 

COMMENTARY     


Share your thoughts, questions and commentary here
Your name
Your comments

Want to know more?
Search encyclopedia, statistics and forums:

 


Press Releases |  Feeds | Contact
The Wikipedia article included on this page is licensed under the GFDL.
Images may be subject to relevant owners' copyright.
All other elements are (c) copyright NationMaster.com 2003-5. All Rights Reserved.
Usage implies agreement with terms, 1022, m