FACTOID # 9: The bookmobile capital of America is Kentucky.
 Home   Encyclopedia   Statistics   States A-Z   Flags   Maps   FAQ   About 


FACTS & STATISTICS    Advanced view

Search encyclopedia, statistics and forums:



(* = Graphable)



Encyclopedia > Riggatron

A Riggatron is a magnetic confinement fusion reactor design created by Robert W. Bussard in the late 1970s. It is similar to the more commonly known Tokamak in most ways. The primary difference is the arrangement of the magnets, which leads to a much smaller reactor core and lower construction costs. Originally referred to as the Demountable Tokamak Fusion Core (DTFC), the name was later changed to refers to the Riggs Bank, who funded development along with Bob Guccioni, publisher of the adult magazine Penthouse. Magnetic confinement fusion is an approach to fusion energy that uses magnetic fields to confine the fusion fuel in the form of a plasma. ... Robert W. Bussard (born 1928) is an American physicist working primarily in nuclear fusion energy research. ... A split image of the largest tokamak in the world, the JET, showing hot plasma in the right image during a shot. ... In architecture, a penthouse is a building on the roof of another building, or alternatively, an apartment on the top floor of a building. ...


Conventional Tokamak design

In a conventional Tokamak design the confinement magnets are arranged outside a "blanket" of liquid lithium. The lithium serves two purposes, one is to absorb the neutrons from the fusion reactions and produce tritium which is then used to fuel the reactor, and as a secondary role, to prevent those neutrons from reaching the magnets. Without the lithium blanket the neutrons degrade the magnets quite quickly, as is the case in existing experimental reactors. Since the confinement area in the center is "far" from the magnets, the magnets have to be extremely powerful. In most modern designs they are assumed to be superconducting, which adds to the expense of the reactor design. General Name, Symbol, Number lithium, Li, 3 Chemical series alkali metals Group, Period, Block 1, 2, s Appearance silvery white/grey Atomic mass 6. ... This article or section does not cite its references or sources. ... Tritium (symbol T or 3H) is a radioactive isotope of hydrogen. ... Superconductivity is a phenomenon occurring in certain materials at low temperatures, characterised by the complete absence of electrical resistance and the damping of the interior magnetic field (the Meissner effect. ...

Riggatron improvement

The Riggatron re-arranged the layout of the conventional design, reducing the role of the lithium to producing tritium only. The magnets were to be directly exposed on the inside of the reactor core, bearing the brunt of the neutron flux. However, as they were much closer to the plasma they did not have to be nearly as powerful, and were made from conventional copper wiring to reduce costs. In commercial operation the coils would degrade very quickly and have to be disposed in as little as 30 days of operation. The Riggatron was laid out to make this core replacement as easy and quick as possible. After removal and replacement, the magnets would then be melted down and reprocessed. Although this process would be expensive, the reduction in complexity and capital costs was a tradeoff that apparently made sense. General Name, Symbol, Number copper, Cu, 29 Chemical series transition metals Group, Period, Block 11, 4, d Appearance metallic pinkish red Atomic mass 63. ...

This re-arrangement of the magnets also led to a much higher containment field inside the core, allowing longer confinement times. To take advantage of this, the design also relied solely on ohmic heating, as opposed to more expensive systems like ion injection. When first proposed in the late 1970s, it was expected that the device would be able to produce about four times the power it used in heating. Whether or not this was possible (given the history of fusion research since that time, it seems unlikely) the project was never completed as Guccioni was unable to secure the $150 million needed to built the full-sized device (much of which was for a homopolar generator). In electronics, and in physics more broadly, Joule heating refers to the increase in temperature of a conductor as a result of resistance to an electrical current flowing through it. ... A homopolar generator, also known as a unipolar generator, acyclic generator, or disk dynamo, is an electrical generator in which the magnetic field has the same polarity at every point, so that the armature passes through the magnetic field lines of force continually in the same direction. ...

Fusion research establishment consideration

Studies carried out at the time suggest the Riggatron was not considered as much of a "sure thing" by other members of the fusion research establishment.[1][2] It should also be noted that existing experimental Tokamaks generally do not include a lithium blanket, and are thus fairly similar to the Riggatron in layout, yet none of these reactors is close generating a fusion gain of one, let alone the three that was being claimed for the Riggatron. In retrospect it appears the Riggatron concept likely would not have worked, due to the various plasma instabilities that were only being discovered coincident with its design process. Interest in the Riggatron appears to have essentially disappeared.

With the demise of the original project, Bussard moved on to new Inertial electrostatic confinement fusion designs with extremely high claimed performance. Inertial electrostatic confinement (often abbreviated as IEC) of a plasma can be achieved with electrostatic fields which accelerate charged particles (either ions or electrons) directly, in a confined space. ...


  1. ^ Selection of a toroidal fusion reactor concept for a magnetic fusion production reactor
  2. ^ Evaluation of Riggatron Concept

  Fusion power  v  d  e 
Atomic nucleus | Nuclear fusion | Nuclear power | Nuclear reactor | Timeline of nuclear fusion
Plasma physics | Magnetohydrodynamics | Neutron flux | Fusion energy gain factor | Lawson criterion
Methods of fusing nuclei

Magnetic confinement: Tokamak - Spheromak - Stellarator - Reversed field pinch - Field-Reversed Configuration - Levitated Dipole
Inertial confinement: Laser driven - Z-pinch - Bubble fusion - Farnsworth–Hirsch Fusor
Other forms of fusion: Muon-catalyzed fusion - Pyroelectric fusion - Migma - Cold fusion The Sun is a natural fusion reactor. ... A semi-accurate depiction of the helium atom. ... The deuterium-tritium (D-T) fusion reaction is considered the most promising for producing fusion power. ... A nuclear power station. ... Core of a small nuclear reactor used for research. ... Timeline of significant events in the study and use of nuclear fusion: 1929 - Atkinson and Houtermans used the measured masses of light elements and applied Einsteins discovery that E=mc² to predict that large amounts of energy could be released by fusing small nuclei together. ... A Plasma lamp In physics and chemistry, a plasma is an ionized gas, and is usually considered to be a distinct phase of matter. ... Magnetohydrodynamics (MHD) (magnetofluiddynamics or hydromagnetics) is the academic discipline which studies the dynamics of electrically conducting fluids. ... neutron flux n : the rate of flow of neutrons; the number of neutrons passing through a unit area in unit time via dictionary. ... The fusion energy gain factor, usually expressed with the symbol Q, is the ratio of fusion power produced in a nuclear fusion reactor to the power required to maintain the plasma in steady state. ... This article or section does not cite its references or sources. ... The deuterium-tritium (D-T) fusion reaction is considered the most promising for producing fusion power. ... Magnetic Fusion Energy (MFE) is a sustained nuclear fusion reaction in a plasma that is contained by magnetic fields. ... A split image of the largest tokamak in the world, the JET, showing hot plasma in the right image during a shot. ... This article needs to be cleaned up to conform to a higher standard of quality. ... Stellarator magnetic field and magnets A stellarator is a device used to confine a hot plasma with magnetic fields in order to sustain a controlled nuclear fusion reaction. ... Reversed-Field Pinch is a toroidal magnetic confinement scheme. ... A Field-Reversed Configuration (FRC) is a device developed for magnetic fusion energy research that confines a plasma on closed magnetic field lines without a central penetration. ... A Levitated Dipole is a unique form of fusion reactor technology using a solid superconducting torus, magnetically levitated in the reactor chamber. ... Inertial confinement fusion using lasers rapidly progressed in the late 1970s and early 1980s from being able to deliver only a few joules of laser energy (per pulse) to a fusion target to being able to deliver tens of kilojoules to a target. ... In inertial confinement fusion (ICF), nuclear fusion reactions are initiated by heating and compressing a target – a pellet that most often contains deuterium and tritium – by the use of intense laser or ion beams. ... The Z machine at Sandia National Laboratories in Albuquerque, New Mexico. ... Bubble fusion or sonofusion is the common name for a nuclear fusion reaction hypothesized to occur during sonoluminescence, an extreme form of acoustic cavitation; officially, this reaction is termed acoustic inertial confinement fusion (AICF) since the inertia of the collapsing bubble wall confines the energy causing a rise in temperature. ... U.S. Patent 3,386,883 - fusor — June 4, 1968 The Farnsworth–Hirsch Fusor, or simply fusor, is an apparatus designed by Philo T. Farnsworth to create nuclear fusion. ... Muon-catalyzed fusion is a process allowing nuclear fusion to take place at room temperature. ... Pyroelectric fusion is a technique for achieving nuclear fusion by using an electric field generated by pyroelectric crystals to accelerate ions of deuterium (tritium might also be used someday) into a metal hydride target also containing detuerium (or tritium) with sufficient kinetic energy to cause these ions to fuse together. ... Migma was a proposed inertial electrostatic confinement fusion reactor designed by Bogdan Maglich around 1973. ... Charles Bennett examines three cold fusion tests cells at the Oak Ridge National Laboratory, USA Cold fusion cell at the US Navy Space and Naval Warfare Systems Center, San Diego, CA (2005) Cold fusion is a theoretical fusion reaction that occurs near room temperature and pressure using relatively simple devices. ...

List of fusion experiments

Magnetic confinement devices
ITER (International) | JET (European) | JT-60 (Japan) | Large Helical Device (Japan) | KSTAR (Korea) | EAST (China) | T-15 (Russia) | DIII-D (USA) | Tore Supra (France) | ASDEX Upgrade (Germany) | TFTR (USA) | NSTX (USA) | NCSX (USA) | Alcator C-Mod (USA) | LDX (USA) | H-1NF (Australia) | MAST (UK) | START (UK) | TCV (Switzerland) | DEMO (Commercial) Experiments directed toward developing fusion power are invariably done with dedicated machines which can be classified according to the principles they use to confine the plasma fuel and keep it hot. ... Cutaway of the ITER Tokamak Torus in casing. ... Split image of JET with right side showing hot plasma during a shot. ... JT-60 (JT stands for Japan Torus) is the flagship of Japans magnetic fusion program, run by the Japan Atomic Energy Research Institute (JAERI), and the Naka Fusion Research Establishment in Ibaraki Prefecture, Japan. ... Categories: Stub | Nuclear technology ... The KSTAR, or Korean Superconducting Tokamak Advanced Reactor is a magnetic fusion device being built at the Korea Basic Science Institute in Daejon, South Korea. ... The Experimental Advanced Superconducting Tokamak (EAST, internally called HT-7U) is a project being undertaken to construct an experimental superconducting tokamak magnetic fusion energy reactor in Hefei, the capital city of Anhui Province, in eastern China. ... The T-15 is a Russian nuclear fusion research reactor, based on the (Russian-invented) tokamak design. ... DIII-D or D3-D is the name of a tokamak machine developed in the 1980s by General Atomics in San Diego, USA, as part of the ongoing effort to achieve magnetically confined fusion. ... The ASDEX Upgrade divertor tokamak (Axially Symmetric Divertor EXperiment) went into operation at the Max-Planck-Institut für Plasmaphysik, Garching in 1991. ... The Tokamak Fusion Test Reactor (TFTR) was an experimental fusion test reactor built at Princeton Plasma Physics Laboratory (in Princeton, New Jersey) circa 1980. ... The National Spherical Torus Experiment (NSTX) is an innovative magnetic fusion device that was constructed by the Princeton Plasma Physics Laboratory (PPPL) in collaboration with the Oak Ridge National Laboratory, Columbia University, and the University of Washington at Seattle. ... The National Compact Stellarator Experiment (NCSX) is a plasma confinement experiment being conducted at the Princeton Plasma Physics Laboratory. ... Alcator C-Mod is a tokamak, a magnetically confined nuclear fusion device, at the MIT Plasma Science and Fusion Center. ... The Levitated Dipole Experiment (LDX) is a project devoted to researching a type of nuclear fusion which utilizes a floating superconducting torus to provide an axisymmetric magnetic field which is used to contain plasma. ... The H-1 flexible Heliac is a three field-period helical axis stellarator located in the Research School of Physical Sciences and Engineering at the Australian National University. ... The Mega Ampere Spherical Tokamak, or MAST experiment is a nuclear fusion experiment in operation at Culham since December 1999. ... The Small Tight Aspect Ratio Tokamak, or START was a nuclear fusion experiment that used magnetic confinement to hold plasma. ... Tokamak à Configuration Variable (TCV): inner view, with the graphite-claded torus. ... The word demo may refer to one of the following. ...

Inertial confinement devices
Laser driven: NIF (USA) | OMEGA laser (USA) | Nova laser (USA) | Novette laser (USA) | Nike laser (USA) | Shiva laser (USA) | Argus laser (USA) | Cyclops laser (USA) | Janus laser (USA) | Long path laser (USA) | 4 pi laser (USA) | LMJ (France) | GEKKO XII (Japan) | ISKRA lasers (Russia) | Vulcan laser (UK) | Asterix IV laser (Czech Republic) | HiPER laser (European)
Non-laser driven:
Z machine (USA) | PACER (USA)
A construction worker inside NIFs 10 meter target chamber. ... The Laboratory for Laser Energetics (LLE) is a scientific research facility which is part of the University of Rochesters south campus, located in Rochester, New York. ... The Nova laser was a laser built at the Lawrence Livermore National Laboratory in 1984 and which conducted advanced inertial confinement fusion experiments until its dismantling in 1999. ... The Novette target chamber with two laser chains visible in background. ... Final amplifier of the Nike laser where laser beam energy is increased from 150 J to ~5 Kj by passing through a krypton/fluorine/argon gas mixture excited by irradiation with two opposing 670,000 volt electron beams. ... The Shiva laser was an extremely powerful 20 beam infrared neodymium glass (silica glass) laser built at Lawrence Livermore National Laboratory in 1977 for the study of inertial confinement fusion and long-scale-length laser-plasma interactions. ... Argus laser overhead view. ... The single beam Cyclops laser at LLNL around the time of its completion in 1975. ... The Janus laser as it appeared in 1975. ... The Long Path laser was an early high energy infrared laser at the Lawrence Livermore National Laboratory used to study inertial confinement fusion. ... Physicist Frank Rainer (inset), who was involved in laser research and development at LLNL since 1966, holds the target chamber seen at the center of the larger picture. ... Laser Mégajoule (LMJ) is an experimental inertial confinement fusion (ICF) device being built in France by the French nuclear science directorate, CEA. Laser Mégajoule plans to deliver about 1. ... GEKKO XII is a high-power 12-beam neodymium doped glass laser at the Osaka Universitys Institute for Laser Engineering completed in 1983, which is used for high energy density physics and inertial confinement fusion research. ... The ISKRA-4 and ISKRA-5 lasers are lasers which were built by the Russian federation at RFNC-VNIIEF in Arzamas-16() with the ~2Kj output ISKRA-4 laser being completed in 1979 and the ~30Kj output ISKRA-5 laser which was completed in 1989. ... The Vulcan laser is an 8 beam 2. ... HiPER is an experimental laser-driven inertial confinement fusion (ICF) device currently undergoing preliminary design for possible construction in the European Union starting around 2010. ... Zork universe Zork games Zork Anthology Zork trilogy Zork I   Zork II   Zork III Beyond Zork   Zork Zero   Planetfall Enchanter trilogy Enchanter   Sorcerer   Spellbreaker Other games Wishbringer   Return to Zork Zork: Nemesis   Zork Grand Inquisitor Zork: The Undiscovered Underground Topics in Zork Encyclopedia Frobozzica Characters   Kings   Creatures Timeline   Magic   Calendar... The PACER project, carried out at Los Alamos National Laboratory in the mid-1970s, explored the possibility of a fusion power system that would involve exploding small hydrogen bombs (fusion bombs)—or, as stated in a later proposal, fission bombs—inside an underground cavity. ...

See also: International Fusion Materials Irradiation Facility The International Fusion Material Irradiation Facility, also known as IFMIF, is an international scientific research program designed to test materials for suitability for use in a fusion reactor. ...

  Results from FactBites:
Philo T. Farnsworth Fusion Discussion Board (242 words)
Unlike the DOE approach which uses superconducting magnets outside a lithium blanket, the Riggatron would run copper coils INSIDE the blanket.
The machine would have hit breakeven by a margin of 4, but the magnets would have to be disposed of after only 30-40 days of use.
Bussard tells me that the present electrostatic fusion scheme was born while agnoizing over the demise of the Riggatron, looking for an affordable confinement scheme.
Amazon.com: RIGGATRON nucleonics: One-dimensional analysis (LA ; 7183-MS): Books: B. R Wienke (455 words)
This item is not eligible for Amazon Prime, but over a million other items are.
RIGGATRON nucleonics: One-dimensional analysis (LA ; 7183-MS) (Unknown Binding)
We don't know when or if this item will be back in stock.
  More results at FactBites »



Share your thoughts, questions and commentary here
Your name
Your comments

Want to know more?
Search encyclopedia, statistics and forums:


Press Releases |  Feeds | Contact
The Wikipedia article included on this page is licensed under the GFDL.
Images may be subject to relevant owners' copyright.
All other elements are (c) copyright NationMaster.com 2003-5. All Rights Reserved.
Usage implies agreement with terms, 1022, m