FACTOID # 11: Oklahoma has the highest rate of women in State or Federal correctional facilities.
 
 Home   Encyclopedia   Statistics   States A-Z   Flags   Maps   FAQ   About 
   
 
WHAT'S NEW
RELATED ARTICLES
People who viewed "Ribosomes" also viewed:
 

SEARCH ALL

FACTS & STATISTICS    Advanced view

Search encyclopedia, statistics and forums:

 

 

(* = Graphable)

 

 


Encyclopedia > Ribosomes
Figure 1: Ribosome structure indicating small subunit (A) and large subunit (B). Side and front view. (1) Head. (2) Platform. (3) Base. (4) Ridge. (5) Central protuberance. (6) Back. (7) Stalk. (8) Front.
Figure 1: Ribosome structure indicating small subunit (A) and large subunit (B). Side and front view.
(1) Head. (2) Platform. (3) Base. (4) Ridge. (5) Central protuberance. (6) Back. (7) Stalk. (8) Front.

A ribosome is an organelle composed of rRNA (synthesized in the nucleolus) and ribosomal proteins. It translates mRNA into a polypeptide chain (e.g., a protein). It can be thought of as a factory that builds a protein from a set of genetic instructions. Ribosomes can float freely in the cytoplasm (the internal fluid of the cell) or bind to another organelle called the endoplasmic reticulum. Since ribosomes are ribozymes, it is thought that they might be remnants of the RNA world.


Overview

Ribosomes consist of two subunits (Figure 1) that fit together (Figure 2) and work as one to translate the mRNA into a polypeptide chain during protein synthesis (Figure 3). Each subunit consists of one or two very large RNA molecules (known as ribosomal RNA or rRNA) and multiple smaller protein molecules. Experiments have shown that the rRNA are the crucial components in protein synthesis, and that one aspect of the process, peptide transfer, can occur in the presence of rRNA alone, albeit at a slower rate. This suggests that the protein components of ribosomes act as a scaffold that may enhance the ability of rRNA to synthesise protein.


The structure and function of ribosomes, and their attendant molecules, known as the translational apparatus, has been of ongoing research interest since the mid 20th century on through the early 21st century. A triennial conference is held to discuss the ribosome. In 1999, the conference was held in Elsinore, Denmark. The 2002 conference was held in Queenstown, New Zealand [1 (http://biochem.otago.ac.nz/ribocon/home.htm)].

Figure 2 : Large (1) and small (2) subunit fit together
Figure 2 : Large (1) and small (2) subunit fit together

Free ribosomes

Free ribosomes occur in all cells, and also in mitochondria and chloroplasts in eukaryotic cells. Several free ribosomes can associate on a single mRNA molecule to form a polyribosome or polysome. Free ribosomes usually produce proteins that are used in the cytosol or in the organelle they occur in.


Membrane bound ribosomes

When certain proteins are synthesized by a ribosome, it can become "membrane-bound", associated with the membrane of the nucleus and the rough endoplasmic reticulum (in eukaryotes only) for the time of synthesis. They insert the freshly produced polypeptide chains directly into the ER, from where they are transported to their destinations. Bound ribosomes usually produce proteins that are used within the cell membrane or are expelled from the cell via exocytosis.


The ribosomal subunits of prokaryotes and eukaryotes are quite similar. However, prokaryotes use 70S ribosomes, each consisting of a (small) 30S and a (large) 50S subunit, whereas eukaryotes use 80S ribosomes, each consisting of a (small) 40S and a bound (large) 60S subunit.[The unit S means Svedberg units, a measure of the rate of sedimentation of a particle in a centrifuge, where the sedimentation rate is associated with the size of the particle. Svedberg units are not additive - two subunits together can have Svedberg values that do not add up to that of the entire ribosome.]

Figure 3 : Translation (1) of mRNA by a ribosome (2) into a polypeptide chain (3). The mRNA begins with a start (AUG) and ends with a stop codon (UAG).
Figure 3 : Translation (1) of mRNA by a ribosome (2) into a polypeptide chain (3). The mRNA begins with a start codon (AUG) and ends with a stop codon (UAG).

In Figure 3, both ribosomal subunits (small and large) assemble at the start codon (the 5' end of the mRNA). The ribosome uses tRNA (transfer RNAs which are RNA molecules that carry an amino acid and present the matching anti-codon, according to the genetic code, to the ribosome) which matches the current codon (triplet) on the mRNA to append an amino acid to the polypeptide chain. This is done for each triplet on the mRNA, while the ribosome moves towards the 3' end of the mRNA. Usually, several ribosomes are working parallel on a single mRNA.


See also: protein assembly

Organelles of the cell
Chloroplast | Mitochondrion | Centriole | Endoplasmic reticulum | Golgi apparatus | Lysosome | Myofibril | Nucleus | Peroxisome | Ribosome | Vacuole | Vesicle


This article contains material from the Science Primer (http://www.ncbi.nlm.nih.gov/About/Primer) published by the NCBI, which, as a US government publication, is in the public domain [1] (http://www.ncbi.nlm.nih.gov/About/disclaimer.html).


  Results from FactBites:
 
Ribosome - Wikipedia, the free encyclopedia (1173 words)
A ribosome is an organelle composed of ribosomal RNA and ribosomal proteins known as a Ribonucleoproteinor RNP.
Ribosomes were first observed in the mid-1950s by Romanian-born American cell biologist George Palade in the electron microscope as dense particles or granules.
The ribosome uses tRNA (transfer RNAs which are RNA molecules that carry an amino acid and present the matching anti-codon, according to the genetic code, to the ribosome) which matches the current codon (triplet) on the mRNA to append an amino acid to the polypeptide chain.
Ribosome (432 words)
Ribosomes are found in the cytosol (the internal fluid of the cell) of all cells.
Free ribosomes usually produce proteins that are used in the cytosol or in the organelle they occur in.
The ribosome uses tRNA[transfer RNAs are RNA molecules that carry an amino acid and present the matching codon, according to the genetic code, to the ribosome.] which matches the current triplet on the mRNA to append an amino acid to the polypeptide chain.
  More results at FactBites »

 
 

COMMENTARY     


Share your thoughts, questions and commentary here
Your name
Your comments

Want to know more?
Search encyclopedia, statistics and forums:

 


Press Releases |  Feeds | Contact
The Wikipedia article included on this page is licensed under the GFDL.
Images may be subject to relevant owners' copyright.
All other elements are (c) copyright NationMaster.com 2003-5. All Rights Reserved.
Usage implies agreement with terms, 1022, m