FACTOID # 21: 15% of Army recruits from South Dakota are Native American, which is roughly the same percentage for female Army recruits in the state.
 
 Home   Encyclopedia   Statistics   States A-Z   Flags   Maps   FAQ   About 
   
 
WHAT'S NEW
 

SEARCH ALL

FACTS & STATISTICS    Advanced view

Search encyclopedia, statistics and forums:

 

 

(* = Graphable)

 

 


Encyclopedia > Proton (physics)
For alternative meanings see proton (disambiguation).
Proton
Classification
Subatomic particle
Fermion
Hadron
Baryon
Nucleon
Proton
Properties
Mass: 938 MeV/c2
Electric Charge: 1.6 10−19 C
Spin: 1/2
Quark Composition: 1 Down, 2 Up


In physics, the proton (Greek proton = first) is a subatomic particle with a positive fundamental electric charge of 1.6 10−19 coulomb and a mass of 938 MeV/c2 (1.6726231 10−27 kg, or about 1800 times the mass of an electron). The proton is observed to be stable, with a lower limit on its half-life of about 1035 years, although some theories predict that the proton may decay.


The nucleus of the most common isotope of the hydrogen atom is a single proton. The nuclei of other atoms are composed of protons and neutrons held together by the strong nuclear force. The number of protons in the nucleus determines the chemical properties of the atom and which chemical element it is.


Protons are classified as baryons and are composed of two Up quarks and one Down quark, which are also held together by the strong nuclear force, mediated by gluons. The proton's antimatter equivalent is the antiproton, which has the same magnitude charge as the proton but the opposite sign.


Because the electromagnetic force is many orders of magnitude stronger than the gravitational force, we see that the charge on the proton must be equal to the charge on the electron, otherwise the net repulsion of having an excess of positive or negative charge (depending on which charge was numerically greater - atoms would not be electrically neutral) would cause a noticeable expansion effect on the universe, and indeed any gravitationally aggregated matter (planets, stars, etc.).


In chemistry and biochemistry, the term proton may refer to the hydrogen ion. In this context, a proton donor is an acid and a proton acceptor a base (see acid-base reaction theories).

Contents

History

The proton was discovered in 1918 by Ernest Rutherford. He noticed that when alpha particles were shot into nitrogen gas, his scintillation detectors showed the signatures of hydrogen nuclei. Rutherford determined that the only place this hydrogen could have come from was the nitrogen, and therefore nitrogen must contain hydrogen nuclei. He thus suggested that the hydrogen nucleus, which was known to have an atomic number of 1, was an elementary particle. This he named proton, from protos, the Greek for "first".


Technological Applications

Protons can exist in spin states. This property is exploited by nuclear magnetic resonance spectroscopy. In NMR spectroscopy, a magnetic field is applied to a substance in order to detect the shielding around the protons in the nuclei of that substance, which is provided by the surrounding electron clouds. Scientists can use this information to then construct the molecular structure of the molecule under study.


See also

External links

  • Particle Data Group (http://pdg.lbl.gov/)

  Results from FactBites:
 
AllRefer.com - proton (Physics) - Encyclopedia (397 words)
The proton is the lightest of the baryon class of elementary particles.
The antiparticle of the proton, the antiproton, was discovered in 1955; it has the same mass as the proton but a unit negative charge and opposite magnetic moment.
Protons are frequently used in a particle accelerator as either the bombarding (accelerated) particle, the target nucleus, or both.
  More results at FactBites »

 
 

COMMENTARY     


Share your thoughts, questions and commentary here
Your name
Your comments

Want to know more?
Search encyclopedia, statistics and forums:

 


Press Releases |  Feeds | Contact
The Wikipedia article included on this page is licensed under the GFDL.
Images may be subject to relevant owners' copyright.
All other elements are (c) copyright NationMaster.com 2003-5. All Rights Reserved.
Usage implies agreement with terms, 1022, m