FACTOID # 6: Michigan is ranked 22nd in land area, but since 41.27% of the state is composed of water, it jumps to 11th place in total area.
 
 Home   Encyclopedia   Statistics   States A-Z   Flags   Maps   FAQ   About 
   
 
WHAT'S NEW
 

SEARCH ALL

FACTS & STATISTICS    Advanced view

Search encyclopedia, statistics and forums:

 

 

(* = Graphable)

 

 


Encyclopedia > Prism compressor
Figure 1. A prism compressor. The red lines represent rays of longer wavelengths and the blue lines those of shorter wavelengths. The spacing of the red, green, and blue wavelength components after the compressor is drawn to scale. This setup has a negative dispersion.

A prism compressor is an optical device used to shorten the duration of ultrashort laser pulses by giving different wavelength components a different time delay. It typically consists of two prisms and a mirror. Figure 1 shows the construction of such a compressor. Although the dispersion of the prism material causes different wavelength components to travel along different paths, the compressor is built such that all wavelength components leave the compressor at different times, but in the same direction. If the different wavelength components of a laser pulse were already separated in time, the prism compressor can make them overlap with each other, thus causing a shorter pulse. Image File history File links Prism-compressor. ... Image File history File links Prism-compressor. ... In optics, a ray is an idealized narrow beam of light. ... For the book by Sir Isaac Newton, see Opticks. ... In optics, an ultrashort pulse of light is an electromagnetic pulse whose time duration is on the order of the femtosecond ( second). ... For other uses, see Wavelength (disambiguation). ... Diagram of a triangular prism, dispersing light Lamps as seen through a prism. ... Dispersion of a light beam in a prism. ... For other uses, see Laser (disambiguation). ...


Prism compressors are typically used to compensate for dispersion inside Ti:sapphire modelocked laser. Each time the laser pulse inside travels through the optical components inside the laser cavity, it becomes stretched. A prism compressor inside the cavity can be designed such that it exactly compensates this intra-cavity dispersion. It can also be used to compensate for dispersion of ultrashort pulses outside laser cavities. Part of a Ti:sapphire oscillator. ... Modelocking is a technique in optics by which a laser can be made to produce pulses of light of extremely short duration, on the order of picoseconds (10-12s) or femtoseconds (10-15s). ...


Prismatic pulse compression was first introduced in 1983 by Dietel et al. [1]. Multiple-prism dispersion theory was explained in 1982 [2] and multiple-prism pulse compression was demonstrated in 1984 [3].

Contents

Principle of operation

Figure 2. Geometry of a prism compressor
Figure 3. Effective pathlength for a prism compressor with A = 100 mm, θ = 55°, and α = 10°. The colors correspond to different values of B, where B = 67.6 mm means that the beam barely hits the tips of both prisms at refractive index 1.6. (The colors do not correspond to those of the rays in Figure 1.)

Almost all optical materials that are transparent for visible light have a normal, or positive, dispersion: the refractive index decreases with increasing wavelength. This means that longer wavelengths travel faster through these materials. The same is true for the prisms in a prism compressor. However, the positive dispersion of the prisms is offset by the extra distance that the longer wavelength components have to travel through the second prism. This is a rather delicate balance, since the shorter wavelengths travel a larger distance through air. However, with a careful choice of the geometry, it is possible to create a negative dispersion that can compensate positive dispersion from other optical components. This is shown in Figure 3. By shifting prism P2 up and down, the dispersion of the compressor can be both negative around refractive index n = 1.6 (red curve) and positive (blue curve). The range with a negative dispersion is relatively short since prism P2 can only be moved upwards over a short distance before the light ray misses it altogether. Image File history File links Prism_compressor_sizes. ... Image File history File links Prism_compressor_sizes. ... Image File history File links Prism_compressor_curve. ... Image File history File links Prism_compressor_curve. ... Transparent glass ball In optics, transparency is the property of allowing light to pass. ... The optical spectrum (light or visible spectrum) is the portion of the electromagnetic spectrum that is visible to the human eye. ... The refractive index (or index of refraction) of a medium is a measure for how much the speed of light (or other waves such as sound waves) is reduced inside the medium. ... Prism splitting light Light is electromagnetic radiation with a wavelength that is visible to the eye, or in a more general sense, any electromagnetic radiation in the range from infrared to ultraviolet. ...


In principle, the α angle can be varied to tune the dispersion properties of a prism compressor. In practice, however, the geometry is chosen such that the incident and refracted beam have the same angle at the central wavelength of the spectrum to be compressed. This configuration is known as the "angle of minimum deviation", and is easier to align than arbitrary angles.


The refractive index of typical materials such as BK7 glass changes only a small amount (0.01 – 0.02) within the few tens of nanometers that are covered by an ultrashort pulse. Within a practical size, a prism compressor can only compensate a few hundred µm of path length differences between the wavelength components. However, by using a large refractive index material (such as SF10, SF11, etc.) the compensation distance can be extended to mm level. This technology has been used successfully inside femtosecond laser cavity for compensation of the Ti:sapphire crystal, and outside for the compensation of dispersion introduced by other elements. However, high-order dispersion will be introduced by the prism compressor itself, as well as other optical elements. Itcan be corrected with careful measurement of the ultrashort pulse and compensate the phase distortion. MIIPS is one of the pulse shaping techniques which can measure and compensate high-order dispersion automatically. As a muddled version of pulse shaping the end mirror is sometimes tilted or even deformed, accepting that the rays do not travel back the same path or become divergent. This article is about crown glass as used in optics. ... A nanometre (American spelling: nanometer) is 1. ... In optics, an ultrashort pulse of light is an electromagnetic pulse whose time duration is on the order of the femtosecond ( second). ... The introduction to this article provides insufficient context for those unfamiliar with the subject matter. ... In optics, Femtosecond pulse shaping refers to various techniques to modify the time profile of an ultrashort pulse from a laser. ... In optics, Femtosecond pulse shaping refers to various techniques to modify the time profile of an ultrashort pulse from a laser. ...


Comparison with other pulse compressors

The most common other pulse compressor is based on gratings (see Chirped pulse amplification), which can easily create a much larger negative dispersion than a prism compressor (centimeters rather than tenths of millimeters). However, a grating compressor has losses of at least 30% due to higher-order diffraction and absorption losses in the metallic coating of the gratings. A prism compressor with an appropriate anti-reflection coating can have less than 2% loss, which makes it a feasible option inside a laser cavity. Moreover, a prism compressor is cheaper than a grating compressor. To meet Wikipedias quality standards, this article or section may require cleanup. ... Chirped pulse amplification (CPA) or optical parametric chirped pulse amplification, is a technique for amplifying an ultrashort laser pulse up to the petawatt level with the laser pulse being stretched out temporally and spectrally prior to amplification. ... The intensity pattern formed on a screen by diffraction from a square aperture Diffraction refers to various phenomena associated with wave propagation, such as the bending, spreading and interference of waves passing by an object or aperture that disrupts the wave. ... In physics, absorption is the process by which the energy of a photon is taken up by another entity, for example, by an atom whose valence electrons make transition between two electronic energy levels. ... Uncoated glasses lens (top) versus lens with anti-reflective coating. ... An optical cavity or optical resonator is an arrangement of mirrors that forms a standing wave cavity resonator for light waves. ...


Another pulse compression technique uses chirped mirrors, which are dielectric mirrors that are designed such that the reflection has a negative dispersion. Chirped mirrors are difficult to manufacture; moreover the amount of dispersion is rather small, which means that the laser beam must be reflected a number of times in order to achieve the same amount of dispersion as with a single prism compressor. This means that it is hard to tune. On the other hand, the dispersion of a chirped-mirror compressor can be manufactured to have a specific dispersion curve, whereas a prism compressor offers much less freedom. Chirped-mirror compressors are used in applications where pulses with a very large bandwidth have to be compressed. A dielectric mirror is a special kind of a mirror. ...


See also

Chirped pulse amplification (CPA) or optical parametric chirped pulse amplification, is a technique for amplifying an ultrashort laser pulse up to the petawatt level with the laser pulse being stretched out temporally and spectrally prior to amplification. ... Part of a Ti:sapphire oscillator. ... Modelocking is a technique in optics by which a laser can be made to produce pulses of light of extremely short duration, on the order of picoseconds (10-12s) or femtoseconds (10-15s). ... In optics, an ultrashort pulse of light is an electromagnetic pulse whose time duration is on the order of the femtosecond ( second). ... The introduction to this article provides insufficient context for those unfamiliar with the subject matter. ...

References

1. W. Dietel, J. J. Fontaine, and J. C. Diels, "Intracavity pulse compression with glass: a new method of generating pulses shorter than 60 fs," Opt. Lett. 8, 4-6 (1983).


2. F. J. Duarte and J. A. Piper, "Dispersion theory of multiple-prism beam expander for pulsed dye lasers," Opt. Commun. 43, 303-307 (1982).


3. R. L. Fork, O. E. Martinez, and J. P. Gordon, "Negative dispersion using pairs of prisms", Optics Letters, 9(5), 150-152 (1984).


 
 

COMMENTARY     


Share your thoughts, questions and commentary here
Your name
Your comments

Want to know more?
Search encyclopedia, statistics and forums:

 


Press Releases |  Feeds | Contact
The Wikipedia article included on this page is licensed under the GFDL.
Images may be subject to relevant owners' copyright.
All other elements are (c) copyright NationMaster.com 2003-5. All Rights Reserved.
Usage implies agreement with terms, 1022, m