FACTOID # 15: A mere 0.8% of West Virginians were born in a foreign country.
 
 Home   Encyclopedia   Statistics   States A-Z   Flags   Maps   FAQ   About 
 
WHAT'S NEW
 

SEARCH ALL

FACTS & STATISTICS    Advanced view

Search encyclopedia, statistics and forums:

 

 

(* = Graphable)

 

 


Encyclopedia > Photoelectric effect
A diagram illustrating the emission of electrons from a metal plate, requiring energy gained from an incoming photon to be more than the work function of the material.
A diagram illustrating the emission of electrons from a metal plate, requiring energy gained from an incoming photon to be more than the work function of the material.

The photoelectric effect is a quantum electronic phenomenon in which electrons are emitted from matter after the absorption of energy from electromagnetic radiation such as x-rays or visible light.[1] The emitted electrons can be referred to as photoelectrons in this context. The effect is also termed the Hertz Effect[2][3], due to its discovery by Heinrich Rudolf Hertz, although the term has generally fallen out of use. Image File history File links This is a lossless scalable vector image. ... Image File history File links This is a lossless scalable vector image. ... Quantum electrodynamics (QED) is a relativistic quantum field theory of electrodynamics. ... For other uses, see Electron (disambiguation). ... Electromagnetic radiation is a propagating wave in space with electric and magnetic components. ... For other uses, see X-rays (disambiguation). ... The optical spectrum (light or visible spectrum) is the portion of the electromagnetic spectrum that is visible to the human eye. ... Heinrich Rudolf Hertz (February 22, 1857 - January 1, 1894) was the German physicist and mechanician for whom the hertz, an SI unit, is named. ...


Study of the photoelectric effect led to important steps in understanding the quantum nature of light and electrons and influenced the formation of the concept of wave–particle duality.[1] In physics and chemistry, wave-particle duality is a conceptualization that all objects in our universe exhibit properties of both waves and of particles. ...

Contents

Introduction

When a metallic surface is exposed to electromagnetic radiation above a threshold frequency (which is specific to the surface of the material), the photons are absorbed and current is produced. No electrons are emitted for radiation with a frequency below that of the threshold because the electrons are unable to gain sufficient energy to overcome the electrostatic barrier presented by the termination of the crystalline surface (the material's work function). In 1905 it was known that the energy of the photoelectrons increased with increasing frequency of incident light. However, the manner of the increase was not experimentally determined to be linear until 1915 when Robert Andrews Millikan showed that Einstein was correct.[4] This article is about metallic materials. ... Look up Threshold in Wiktionary, the free dictionary. ... In electricity, current refers to electric current, which is the flow of electric charge. ... The work function is the minimum energy (usually measured in electron volts) needed to remove an electron from a solid to a point immediately outside the solid surface. ... Robert Andrews Millikan (March 22, 1868 – December 19, 1953) was an American experimental physicist who won the 1923 Nobel Prize for his measurement of the charge on the electron and for his work on the photoelectric effect. ...


By the law of conservation of energy, the electron absorbs the energy of the photon and if sufficient, the electron can escape the material with a finite kinetic energy. A single photon can only eject a single electron because the energy of one photon can only be absorbed by one electron. The electrons that are emitted are often termed photoelectrons. Conservation of energy (the first law of thermodynamics) is one of several conservation laws. ...


The photoelectric effect helped further wave-particle duality, whereby physical systems (such as photons, in this case) display both wave-like and particle-like properties, a concept that was used in quantum mechanics. Albert Einstein mathematically explained the photoelectric effect and extended the work on quanta that Max Planck developed. In physics, wave-particle duality holds that light and matter exhibit properties of both waves and of particles. ... In modern physics the photon is the elementary particle responsible for electromagnetic phenomena. ... For a less technical and generally accessible introduction to the topic, see Introduction to quantum mechanics. ... “Einstein” redirects here. ... “Planck” redirects here. ...


Explanation

The photons of the light beam have a characteristic energy determined by the frequency of the light. In the photoemission process, if an electron absorbs the energy of one photon and has more energy than the work function, it is ejected from the material. If the photon energy is too low, the electron is unable to escape the surface of the material. Increasing the intensity of the light beam does not change the energy of the constituent photons, only the number of photons. Thus the energy of the emitted electrons does not depend on the intensity of the incoming light, but only on the energy of the individual photons. The work function is the minimum energy (usually measured in electron volts) needed to remove an electron from a solid to a point immediately outside the solid surface. ...


Electrons can absorb energy from photons when irradiated, but they follow an "all or nothing" principle. All of the energy from one photon must be absorbed and used to liberate one electron from atomic binding, or the energy is re-emitted. If the photon energy is absorbed, some of the energy liberates the electron from the atom, and the rest contributes to the electron's kinetic energy as a free particle. The cars of a roller coaster reach their maximum kinetic energy when at the bottom of their path. ...


Laws of photoelectric emission

  1. For a given metal and frequency of incident radiation, the rate at which photoelectrons are ejected is directly proportional to the intensity of the incident light.
  2. For a given metal, there exists a certain minimum frequency of incident radiation below which no photoelectrons can be emitted. This frequency is called the threshold frequency.
  3. Above the threshold frequency, the maximum kinetic energy of the emitted photoelectron is independent of the intensity of the incident light but depends on the frequency of the incident light.
  4. The time lag between the incidence of radiation and the emission of a photoelectron is very small, less than 10-9 seconds.

Equations

In analysing the photoelectric effect quantitatively using Einstein's method, the following equivalent equations are used:


Energy of photon = Energy needed to remove an electron + Kinetic energy of the emitted electron In modern physics the photon is the elementary particle responsible for electromagnetic phenomena. ... For other uses, see Electron (disambiguation). ... The cars of a roller coaster reach their maximum kinetic energy when at the bottom of their path. ...


Algebraically:

hf = phi + E_{k_{max}} ,

where

  • h is Planck's constant,
  • f is the frequency of the incident photon,
  • phi = h f_0  is the work function (sometimes denoted W instead), the minimum energy required to remove a delocalised electron from the surface of any given metal,
  • E_{k_{max}} = frac{1}{2} m v_m^2 is the maximum kinetic energy of ejected electrons,
  • f0 is the threshold frequency for the photoelectric effect to occur,
  • m is the rest mass of the ejected electron, and
  • vm is the velocity of the ejected electron.

Note: If the photon's energy (hf) is less than or equal to the work function (φ), no electron will be emitted. The work function is sometimes denoted W. A commemoration plaque for Max Planck on his discovery of Plancks constant, in front of Humboldt University, Berlin. ... The work function is the minimum energy (usually measured in electron volts) needed to remove an electron from a solid to a point immediately outside the solid surface. ... For other uses, see Frequency (disambiguation). ...


Since an emitted electron cannot have negative kinetic energy, the equation implies that if the photon's energy is less than the work function, no electron will be emitted.


According to Einstein's special theory of relativity the relation between energy (E) and momentum (p) of a particle is E = sqrt{(pc)^2 + (mc^2)^2}, where m is the rest mass of the particle and c is the velocity of light in a vacuum.


Three-step model

The photoelectric effect in crystalline material is often decomposed into three steps:[5]

  1. Inner photoelectric effect (see photodiode below). The hole left behind can give rise to auger effect, which is visible even when the electron does not leave the material. In molecular solids photons are excited in this step and may be visible as lines in the final electron energy. The inner photoeffect has to be dipole allowed. The transition rules for atoms translate via the tight-binding model onto the crystal. They are similar in geometry to plasma oscillations in that they have to be transversal.
  2. Ballistic transport of half of the electrons to the surface. Some electrons are scattered.
  3. Electrons escape from the material at the surface.

In the three-step model an electron can take multiple paths through this three steps. All paths can interfere in the sense of the path integral formulation. For surface states and molecules the three-step model does still make some sense as even most atoms have multiple electrons which can scatter the one electron leaving. The Auger effect (pronounced , or Oh jeh) is a phenomenon in physics in which the emission of an electron from an atom causes the emission of a second electron. ... In modern physics the photon is the elementary particle responsible for electromagnetic phenomena. ... The transition rules (or selection rules) describe possible state transitions of a quantum mechanical system, expressed by changes of the quantum numbers. ... In the tight binding model, it is assumed that the full Hamiltonian of the system may be approximated by the Hamiltonian of an isolated atom centred at each lattice point. ... In plasma physics, plasma oscillations, also known as Langmuir waves (after Irving Langmuir) and plasma waves, are periodic oscillations of charge density in conducting media such as plasmas or metals. ... This article or section is in need of attention from an expert on the subject. ... 3D (left and center) and 2D (right) representations of the terpenoid molecule atisane. ... Properties For other meanings of Atom, see Atom (disambiguation). ...


History

Early observations

In 1839, Alexandre Edmond Becquerel observed the photoelectric effect via an electrode in a conductive solution exposed to light. In 1873, Willoughby Smith found that selenium is photoconductive. Alexandre-Edmond Becquerel Alexandre-Edmond Becquerel (March 24, 1820 - May 11, 1891) was a French physicist who studied the solar spectrum, magnetism, electricity, and optics. ... 1873 (MDCCCLXXIII) was a common year starting on Wednesday (see link for calendar). ... Willoughby Smith (April 6, 1828, Great Yarmouth, England — July 17, 1891, Eastbourne, England) was an electrical engineer who discovered the photoconductivity of the element selenium. ... For other uses, see Selenium (disambiguation). ...


Hertz's spark gaps

In 1887, Heinrich Hertz observed the photoelectric effect and the production and reception of electromagnetic (EM) waves. He published these observations in the journal Annalen der Physik. His receiver consisted of a coil with a spark gap, where a spark would be seen upon detection of EM waves. He placed the apparatus in a darkened box to see the spark better. However, he noticed that the maximum spark length was reduced when in the box. A glass panel placed between the source of EM waves and the receiver absorbed ultraviolet radiation that assisted the electrons in jumping across the gap. When removed, the spark length would increase. He observed no decrease in spark length when he substituted quartz for glass, as quartz does not absorb UV radiation. Hertz concluded his months of investigation and reported the results obtained. He did not further pursue investigation of this effect, nor did he make any attempt at explaining how this phenomenon was brought about. Heinrich Rudolf Hertz (February 22, 1857 - January 1, 1894) was the German physicist and mechanician for whom the hertz, an SI unit, is named. ... Annalen der Physik is one of the best-known and oldest (it was founded in 1799) physics journals worldwide. ... A spark plug. ... For other uses, see Quartz (disambiguation). ...


JJ Thomson: electrons

In 1899, Joseph John Thomson investigated ultraviolet light in Crookes tubes. Influenced by the work of James Clerk Maxwell, Thomson deduced that cathode rays consisted of negatively charged particles, later called electrons, which he called "corpuscles". In the research, Thomson enclosed a metal plate (a cathode) in a vacuum tube, and exposed it to high frequency radiation. It was thought that the oscillating electromagnetic fields caused the atoms' field to resonate and, after reaching a certain amplitude, caused a subatomic "corpuscle" to be emitted, and current to be detected. The amount of this current varied with the intensity and color of the radiation. Larger radiation intensity or frequency would produce more current. Sir Joseph John Thomson Sir Joseph John Thomson (18 December 1856 – 30 August 1940), often known as J. J. Thomson, was an English physicist, the discoverer of the electron. ... Note: Ultraviolet is also the name of a 1998 UK television miniseries about vampires. ... The Geissler tube is a glass tube for demonstrating the principles of electrical discharge. ... James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and theoretical physicist from Edinburgh, Scotland, UK. His most significant achievement was aggregating a set of equations in electricity, magnetism and inductance — eponymously named Maxwells equations — including an important modification (extension) of the Ampères...


Radiant energy

Photoelectric motor, US685957
Rays falling on insulated conductor connected to a capacitor: the capacitor charges electrically.

Nikola Tesla described the photoelectric effect in 1901. He described such radiation as vibrations of aether of small wavelengths which ionized the atmosphere. On November 5, 1901, he received the patent US685957 (Apparatus for the Utilization of Radiant Energy) that describes radiation charging and discharging conductors (e.g., a metal plate or piece of mica) by "radiant energy". Tesla used this effect to charge a capacitor with energy by means of a conductive plate (i.e., a solar cell precursor). The radiant energy threw off with great velocity minute particles (i.e., electrons) which were strongly electrified. The patent specified that the radiation (or radiant energy) included many different forms. These devices have been referred to as "Photoelectric alternating current stepping motors". photoelectric_effect - Tesla patent - small PNG See also: Image:PhotoelectricEffect(Tesla-small). ... photoelectric_effect - Tesla patent - small PNG See also: Image:PhotoelectricEffect(Tesla-small). ... Nikola Tesla (1856-1943)[1] was a world-renowned Serbian inventor, physicist, mechanical engineer and electrical engineer. ... Year 1901 (MCMI) was a common year starting on Tuesday (link will display calendar) of the Gregorian calendar (or a common year starting on Monday [1] of the 13-day-slower Julian calendar). ... Look up vibration in Wiktionary, the free dictionary. ... Look up aether, ether in Wiktionary, the free dictionary. ... For other uses, see Wavelength (disambiguation). ... This article is about the electrically charged particle. ... For other uses, see Atmosphere (disambiguation). ... is the 309th day of the year (310th in leap years) in the Gregorian calendar. ... For other uses, see Patent (disambiguation). ... Below is a list of Tesla patents. ... This article is about metallic materials. ... Rock with mica Mica sheet Mica flakes The mica group of sheet silicate minerals includes several closely related materials having highly perfect basal cleavage. ... Radiant energy is the energy of electromagnetic waves. ... A solar cell, made from a monocrystalline silicon wafer A solar cell or photovoltaic cell is a device that converts light energy into electrical energy. ...


In practice, a polished metal plate in radiant energy (e.g. sunlight) will gain a positive charge as electrons are emitted by the plate. As the plate charges positively, electrons form an electrostatic force on the plate (because of surface emissions of the photoelectrons), and "drain" any negatively charged capacitors. As the rays or radiation fall on the insulated conductor (which is connected to a capacitor), the condenser will indefinitely charge electrically. See Capacitor (component) for a discussion of specific types. ...


Von Lenard's observations

In 1902, Philipp von Lenard observed the variation in electron energy with light frequency.[6] He used a powerful electric arc lamp which enabled him to investigate large changes in intensity, and had sufficient power to enable him to investigate the variation of potential with light frequency. His experiment directly measured potentials, not electron kinetic energy: he found the electron energy by relating it to the maximum stopping potential (voltage) in a phototube. He found that the calculated maximum electron kinetic energy is determined by the frequency of the light. For example, an increase in frequency results in an increase in the maximum kinetic energy calculated for an electron upon liberation - ultraviolet radiation would require a higher applied stopping potential to stop current in a phototube than blue light. However Lenard's results were qualitative rather than quantitative because of the difficulty in performing the experiments: the experiments needed to be done on freshly cut metal so that the pure metal was observed, but it oxidised in a matter of minutes even in the partial vacuums he used. The current emitted by the surface was determined by the light's intensity, or brightness: doubling the intensity of the light doubled the number of electrons emitted from the surface. Lenard did not know of photons. Philipp Eduard Anton von Lenard (born in Bratislava on June 7, 1862 – died May 20, 1947 in Messelhausen) was a physicist and the winner of the Nobel Prize for Physics in 1905 for his research on cathode rays and the discovery of many of their properties. ... The cars of a roller coaster reach their maximum kinetic energy when at the bottom of their path. ... Note: Ultraviolet is also the name of a 1998 UK television miniseries about vampires. ...


Einstein: light quanta

Albert Einstein's mathematical description in 1905 of how the photoelectric effect was caused by absorption of quanta of light (now called photons), was in the paper named "On a Heuristic Viewpoint Concerning the Production and Transformation of Light". This paper proposed the simple description of "light quanta," or photons, and showed how they explained such phenomena as the photoelectric effect. His simple explanation in terms of absorption of single quanta of light explained the features of the phenomenon and the characteristic frequency. Einstein's explanation of the photoelectric effect won him the Nobel Prize (in Physics) of 1921. “Einstein” redirects here. ... For a less technical and generally accessible introduction to the topic, see Introduction to quantum mechanics. ... In modern physics the photon is the elementary particle responsible for electromagnetic phenomena. ... In physics quanta is the plural of quantum. ... The Nobel Prize (Swedish: ), as designated in Alfred Nobels will in 1895, is awarded in Physics, Chemistry, Physiology or Medicine, Literature, and Peace. ...


The idea of light quanta began with Max Planck's published law of black-body radiation ("On the Law of Distribution of Energy in the Normal Spectrum". Annalen der Physik 4 (1901)) by assuming that Hertzian oscillators could only exist at energies E proportional to the frequency f of the oscillator by E = hf, where h is Planck's constant. By assuming that light actually consisted of discrete energy packets, Einstein wrote an equation for the photoelectric effect that fit experiments (it explained why the energy of the photoelectrons was dependent only on the frequency of the incident light and not on its intensity: a low intensity, high frequency source could supply a few high energy photons, whereas a high intensity, low frequency source would supply no photons of sufficient individual energy to dislodge any electrons). This was an enormous theoretical leap but the reality of the light quanta was strongly resisted. The idea of light quanta contradicted the wave theory of light that followed naturally from James Clerk Maxwell's equations for electromagnetic behavior and more generally, the assumption of infinite divisibility of energy in physical systems. Even after experiments showed that Einstein's equations for the photoelectric effect were accurate resistance to the idea of photons continued, since it appeared to contradict Maxwell's equations, which were well understood and verified. “Planck” redirects here. ... Black body spectrum For a general introduction, see black body. ... James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and theoretical physicist from Edinburgh, Scotland, UK. His most significant achievement was aggregating a set of equations in electricity, magnetism and inductance — eponymously named Maxwells equations — including an important modification (extension) of the Ampères... The concept of infinite divisibility arises in different ways in philosophy, physics, economics, order theory (a branch of mathematics), and probability theory (also a branch of mathematics). ...


Einstein's work predicted that the energy of the ejected electrons increases linearly with the frequency of the light. Perhaps surprisingly, that had not yet been tested. In 1905 it was known that the energy of the photoelectrons increased with increasing frequency of incident light -- and independent of the intensity of the light. However, the manner of the increase was not experimentally determined to be linear until 1915 when Robert Andrews Millikan showed that Einstein was correct.[7] Not to be confused with Robert S. Mulliken. ...


Effect on wave-particle question

The photoelectric effect helped propel the then-emerging concept of the dual nature of light, that light exhibits characteristics of waves and particles at different times. The effect was impossible to understand in terms of the classical wave description of light, as the energy of the emitted electrons did not depend on the intensity of the incident radiation. Classical theory predicted that the electrons could 'gather up' energy over a period of time, and then be emitted. For such a classical theory to work a pre-loaded state would need to persist in matter. The idea of the pre-loaded state was discussed in Millikan's book Electrons (+ & -) and in Compton and Allison's book X-Rays in Theory and Experiment. These ideas were abandoned. This article does not cite any references or sources. ... Surface waves in water This article is about waves in the most general scientific sense. ...


Uses and effects

Photodiodes and phototransistors

Solar cells (used in solar power) and light-sensitive diodes use a variant of the photoelectric effect, but not ejecting electrons out of the material. In semiconductors, light of even relatively low energy, such as visible photons, can kick electrons out of the valence band and into the higher-energy conduction band, where they can be harnessed, creating electric current at a voltage related to the bandgap energy. A solar cell, made from a monocrystalline silicon wafer A solar cell or photovoltaic cell is a device that converts light energy into electrical energy. ... Heat and light from the Sun fuel life on Earth. ... Photodiode closeup A photodiode A photodiode is a semiconductor diode that functions as a photodetector. ... A semiconductor is a solid whose electrical conductivity is in between that of a conductor and that of an insulator, and can be controlled over a wide range, either permanently or dynamically. ... In solids, the valence band is the highest range of electron energies where electrons are normally present at zero temperature. ... In semiconductors and insulators, the conduction band is the range of electron energy, higher than that of the valence band, sufficient to make the electrons free to accelerate under the influence of an applied electric field and thus constitute an electric current. ... Electric current is the flow (movement) of electric charge. ... In solid state physics and related applied fields, the band gap is the energy difference between the top of the valence band and the bottom of the conduction band in insulators and semiconductors. ...


Image sensors

Video camera tubes in the early days of television used the photoelectric effect; newer variants used photoconductive rather than photoemissive materials. In older video cameras, before the 1990s, a video camera tube or pickup tube was used instead of a charge-coupled device (CCD). ...


Silicon image sensors, such as charge-coupled devices, widely used for photographic imaging, are based on a variant of the photoelectric effect, in which photons knock electrons out of the valence band of energy states in a semiconductor, but not out of the solid itself. A dismantled USB webcam, with and without a lens over its (Bayer format) image sensor. ... A specially developed CCD used for ultraviolet imaging in a wire bonded package. ... A semiconductor is a solid whose electrical conductivity is in between that of a conductor and that of an insulator, and can be controlled over a wide range, either permanently or dynamically. ...


Electroscopes

Electroscopes are fork-shaped, hinged metallic leaves placed in a vacuum jar, partially exposed to the outside environment. When an electroscope is charged positively or negatively, the two leaves separate, as charge distributes evenly along the leaves causing repulsion between two like poles. When ultraviolet radiation (or any radiation above threshold frequency) shines onto the metallic outside of the electroscope, a negatively charged scope will discharge and the leaves will collapse, while nothing will happen to a positively charged scope (besides charge decay). The reason is that electrons will be liberated from the negatively charged one, gradually making it neutral, while liberating electrons from the positively charged one will make it even more positive, keeping the leaves apart An electroscope is a device which is used to detect the presence and magnitude of electric charge on a body. ...


Photoelectron spectroscopy

Since the energy of the photoelectrons emitted is exactly the energy of the incident photon minus the material's work function or binding energy, the work function of a sample can be determined by bombarding it with a monochromatic X-ray source or UV source (typically a helium discharge lamp), and measuring the kinetic energy distribution of the electrons emitted. Something which is monochromatic has a single color. ... In the NATO phonetic alphabet, X-ray represents the letter X. An X-ray picture (radiograph) taken by Röntgen An X-ray is a form of electromagnetic radiation with a wavelength approximately in the range of 5 pm to 10 nanometers (corresponding to frequencies in the range 30 PHz... Note: Ultraviolet is also the name of a 1998 UK television miniseries about vampires. ... For other uses, see Helium (disambiguation). ...


Using lasers, different photon energies are available. This method allows looking into the bulk, or into nanostructures on the top, or with 50 eV at the topmost atomic layer. Laser pulses can be used for time-resolved two-photon PES to monitor dynamics. They also allow the use of time-of-flight spectrometers for 10 eV ranges, using fewer electrons. For other uses, see Laser (disambiguation). ... The Time of flight (TOF) method of measuring particle mass-to-charge ratio is done as follows. ...


Photoelectron spectroscopy is done in a high vacuum environment, since the electrons would be scattered by air. Look up Vacuum in Wiktionary, the free dictionary. ...


A typical electron energy analyzer is a concentric hemispherical analyser (CHA), which uses an electric field to divert electrons different amounts depending on their kinetic energies. For every element and core atomic orbital there will be a different binding energy. The many electrons created from each will then show up as spikes in the analyzer, and can be used to determine the elemental composition of the sample.[8] In chemistry, an atomic orbital is the region in which an electron may be found around a single atom. ...


Spacecraft

The photoelectric effect will cause spacecraft exposed to sunlight to develop a positive charge. This can get up to the tens of volts. This can be a major problem, as other parts of the spacecraft in shadow develop a negative charge (up to several kilovolts) from nearby plasma, and the imbalance can discharge through delicate electrical components. The static charge created by the photoelectric effect is self-limiting, though, because a more highly-charged object gives up its electrons less easily.[9] The Space Shuttle Discovery as seen from the International Space Station. ... Josephson junction array chip developed by NIST as a standard volt. ... Static electricity is a class of phenomena involving the net charge present on an object; typically referring to charged object with voltages of sufficient magnitude to produce visible attraction, repulsion, and sparks. ...


Moon dust

Light from the sun hitting lunar dust causes it to become charged through the photoelectric effect. The charged dust then repels itself and lifts off the surface of the Moon by electrostatic levitation. This manifests itself almost like an "atmosphere of dust", visible as a thin haze and blurring of distant features, and visible as a dim glow after the sun has set. This was first photographed by the Surveyor program probes in the 1960s. It is thought that the smallest particles are repelled up to kilometers high, and that the particles move in "fountains" as they charge and discharge.[10][11] This article is about Earths moon. ... Electrostatic levitation is the process of using an electric field to lift a charged object and counteract the effects of gravity. ... Photograph of Surveyor(3) lunar landing spacecraft taken by Apollo 12 astronauts (descriptions added). ...


Night Vision Devices

Photons hitting a gallium arsenide plate in Night Vision Devices cause the ejection of photoelectrons due to the photoelectric effect. These are then then amplified into a cascade of electrons that light up a phosphor screen. Green screen A phosphor is a substance that exhibits the phenomenon of phosphorescence (sustained glowing after exposure to light or energised particles such as electrons). ...


References

Notes

  1. ^ a b Serway, Raymond A. (1990). Physics for Scientists & Engineers. Saunders, p. 1150. ISBN 0030302587.  Describes the photoelectric effect as the "emission of photoelectrons from matter", and describes the original usage as the "emission of photoelectrons from metallic surfaces" after the experiments of Milikan, and others.
  2. ^ The American journal of science. (1880). New Haven: J.D. & E.S. Dana. Page 234
  3. ^ Wolfram Scienceworld describes the terminology of the photoelectric effect and the previous usage of the term Hertz Effect.
  4. ^ Millikan, Robert Andrews (1916). "A Direct Photoelectric Determination of Planck's "h"". Physical Review VII: 362. 
  5. ^ Stefan Hüfner (2003). Photoelectron Spectroscopy: Principles and Applications. Springer. ISBN 3540418024. 
  6. ^ http://www.phys.virginia.edu/classes/252/photoelectric_effect.html
  7. ^ http://spiff.rit.edu/classes/phys314/lectures/photoe/photoe.html
  8. ^ Photoelectron spectroscopy
  9. ^ Spacecraft charging
  10. ^ - Moon fountains
  11. ^ - Dust gets a charge in a vacuum

Book References

Serway, R. A. (1990). Physics for engineers and scientists, 3rd ed. Saunders Publishing


See also

Electronics: This article is about the engineering discipline. ...

Physics: In telecommunication, photocurrent is the current that flows through a photosensitive device, such as a photodiode, as the result of exposure to radiant power. ... Photomultipliers, or photomultiplier tubes (PMT) are extremely sensitive detectors of light in the ultraviolet, visible and near infrared. ... A solar cell, made from a monocrystalline silicon wafer A solar cell or photovoltaic cell is a device that converts light energy into electrical energy. ... Heat and light from the Sun fuel life on Earth. ... A transducer is a device, usually electrical or electronic, that converts one type of energy to another. ... A magnet levitating above a high-temperature superconductor demonstrates the Meissner effect. ...

People: Properties For other meanings of Atom, see Atom (disambiguation). ... In electricity, a corona discharge is an electrical discharge brought on by the ionization of a fluid surrounding a conductor, which occurs when the potential gradient exceeds a certain value, in situations where sparking (also known as arcing) is not favoured. ... Slit experiment redirects here. ... For other uses, see Electron (disambiguation). ... This article is about electromagnetic radiation. ... Hannes Alfvén (1908–1995) accepting the Nobel Prize for his work on magnetohydrodynamics [1]. List of Nobel Prize laureates in Physics from 1901 to the present day. ... An optical phenomenon is any observable event which results from the interaction of light and matter. ... Photoemission Spectroscopy refers to two separate techniques/ X-Ray Photoemission Spectroscopy (XPS, formerly known as ESCA - Electron Spectroscopy for Chemical Analysis) was developed at Uppsala University, Sweden in the 1960s by a group headed by Kai Siegbahn, who in 1981 won the Nobel Prize for Physics for his work in... In modern physics the photon is the elementary particle responsible for electromagnetic phenomena. ... The Dynamics of photons in the double-slit experiment describes the relationship between classical electromagnetic waves and photons, the quantum counterpart of classical electromagnetic waves, in the context of the double-slit experiment. ... Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. ... Black body spectrum In physics, Plancks law of black body radiation predicts the spectral intensity of electromagnetic radiation at all wavelengths from a black body at temperature  : where the following table provides the definition and SI units of measure for each symbol: The wavelength is related to the frequency... For a less technical and generally accessible introduction to the topic, see Introduction to quantum mechanics. ... Radiant energy is the energy of electromagnetic waves. ... In physics, wave-particle duality holds that light and matter exhibit properties of both waves and of particles. ...

Lists: Aleksandr Stoletov Aleksandr Grigorievich Stoletov (Александр Григорьевич Столетов, August 10, 1839-May 27, 1896) - Russian physicist, founder of electrical engineering, and professor in Moscow University. ... “Einstein” redirects here. ... Heinrich Rudolf Hertz (February 22, 1857 - January 1, 1894) was the German physicist and mechanician for whom the hertz, an SI unit, is named. ... Ernest O. Lawrence Ernest Orlando Lawrence (August 8, 1901 – August 27, 1958) was an American physicist and Nobel Laureate best known for his invention, utilization, and improvement of the cyclotron beginning in 1929, and his later work in uranium-isotope separation in the Manhattan Project. ... Robert Andrews Millikan (March 22, 1868 – December 19, 1953) was an American experimental physicist who won the 1923 Nobel Prize for his measurement of the charge on the electron and for his work on the photoelectric effect. ... “Planck” redirects here. ... Sir Joseph John Thomson Sir Joseph John Thomson (18 December 1856 – 30 August 1940), often known as J. J. Thomson, was an English physicist, the discoverer of the electron. ...

This is a list of communications, computers, electronic circuits, fiberoptics, microelectronics, medical electronics, reliability, and semiconductors. ... Probably some Wikipedia articles on topics in optics are not yet listed on this page. ... This page aims to list all Wikipedia articles that are related to physics. ... It has been suggested that this article or section be merged with Timeline of photovoltaics. ... This page aims to list articles on Wikipedia that are related to the scientific method. ... Timeline of quantum mechanics, molecular physics, atomic physics, nuclear physics, and particle physics 440 BC Democritus speculates about fundamental indivisible particles---calls them atoms The beginning of the chemie 1766 Henry Cavendish discovers and studies hydrogen 1778 Carl Scheele and Antoine Lavoisier discover that air is composed mostly of nitrogen...

External links

Wikimedia Commons has media related to:
Photoelectric effect

Applets Image File history File links Commons-logo. ... An applet is a software component that runs in the context of another program, for example a web browser. ...


  Results from FactBites:
 
Photoelectric Effect (2229 words)
This process is called the photoelectric effect (or photoelectric emission or photoemission), a material that can exhibit this phenomena is said to be photoemissive, and the ejected electrons are called photoelectrons; but there is nothing that would distinguish them from other electrons.
The photoelectric effect was first observed in 1887 by Heinrich Hertz (1857-1894) during experiments with a spark-gap generator -- the earliest form of radio receiver.
The photoelectric current generated by this means was quite small, but could be measured with the microammeter (a sensitive galvanometer with a maximum deflection of only a few microamps).
  More results at FactBites »

 
 

COMMENTARY     


Share your thoughts, questions and commentary here
Your name
Your comments

Want to know more?
Search encyclopedia, statistics and forums:

 


Press Releases |  Feeds | Contact
The Wikipedia article included on this page is licensed under the GFDL.
Images may be subject to relevant owners' copyright.
All other elements are (c) copyright NationMaster.com 2003-5. All Rights Reserved.
Usage implies agreement with terms, 1022, m