FACTOID # 13: New York has America's lowest percentage of residents who are veterans.
 
 Home   Encyclopedia   Statistics   States A-Z   Flags   Maps   FAQ   About 
   
 
WHAT'S NEW
 

SEARCH ALL

FACTS & STATISTICS    Advanced view

Search encyclopedia, statistics and forums:

 

 

(* = Graphable)

 

 


Encyclopedia > Orbit equation

In astrodynamics an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time. Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular orbit, elliptic orbit, parabolic trajectory, hyperbolic trajectory) with the central body in one the two foci, or the focus (Kepler's first law).


If the conic section intersects the central body, then the actual trajectory can only be the part above the surface, but for that part the orbit equation and many related formulas still apply, as long as it is a freefall (situation of weightlessness).


In polar coordinates the orbit equation is:

where we have the polar coordinates:

  • is the distance between the orbiting body and the central body
  • is the direction of the orbiting body, called the true anomaly

and the parameters:

Note that is the semi-latus rectum of the conic section. This ratio, together with , fully determines the geometry of the orbit. For a given orbit, the larger , the faster the orbiting body moves in it: twice as fast if the attraction is four times as strong.


The minimum value of r in the equation is

while, if e < 1, the maximum value is

If the maximum is less than the radius of the central body, then the conic section is an ellipse which is fully inside the central body and no part of it is a possible trajectory. If the maximum is more, but the minimum is less than the radius, part of the trajectory is possible:

  • if the energy is non-negative (parabolic or hyperbolic orbit): the motion is either away from the central body, or towards it.
  • if the energy is negative: the motion can be first away from the central body, up to
after which the object falls back.

If r becomes such that the orbiting body enters an atmosphere, then the standard assumptions no longer apply, as in atmospheric reentry.


Low-energy trajectories

If the central body is the Earth, and the energy is only slightly larger than the potential energy at the surface of the Earth, than the orbit is elliptic with eccentricity close to 1 and one end of the ellipse just beyond the center of the Earth, and the other end just above the surface. Only a small part of the ellipse is applicable.


If the horizontal speed is , then the periapsis distance is . The energy at the surface of the Earth corresponds to that of an elliptic orbit with (with the radius of the Earth), which can not actually exist because it is an ellipse fully below the surface. The energy increase with increase of a is at a rate . The maximum height above the surface of the orbit is the length of the ellipse, minus , minus the part "below" the center of the Earth, hence twice the increase of minus the periapsis distance. At the top the potential energy is g times this height, and the kinetic energy is . This adds up to the energy increase just mentioned. The width of the ellipse is 19 minutes times .


The part of the ellipse above the surface can be approximated by a part of a parabola, which is obtained in a model where gravity is assumed constant. This should be distinguished from the parabolic orbit in the sense of astrodynamics, where the velocity is the escape velocity. See also trajectory.


Categorization of orbits

Consider orbits which are at one point horizontal, near the surface of the Earth. For increasing speeds at this point the orbits are subsequently:

  • part of an ellipse with vertical major axis, with the center of the Earth as the far focus (throwing a stone, sub-orbital spaceflight, ballistic missile)
  • a circle just above the surface of the Earth (Low Earth orbit)
  • an ellipse with vertical major axis, with the center of the Earth as the near focus
  • a parabola
  • a hyperbola

Note that in the sequence above, h, ε and a increase monotonically, but e first decreases from 1 to 0, then increases from 0 to infinity. The reversal is when the center of the Earth changes from apoapsis to periapsis (the other focus starts near the surface and passes the center of the Earth). We have

Extending this to orbits which are horizontal at another height, and orbits of which the extrapolation is horizontal below the surface of the Earth, we get a categorization of all orbits, except the radial trajectories, for which, by the way, the orbit equation can not be used. In this categorization ellipses are considered twice, so for ellipses with both sides above the surface one can restrict oneself to taking the side which is lower as the reference side, while for ellipses of which only one side is above the surface, taking that side.


See also


  Results from FactBites:
 
Earth's Orbit (1857 words)
If a plane containing an orbit crosses a reference plane, we call the points where the orbit crosses the reference plane the nodes of the orbit and the straight line passing through those points, the line on which the two planes cross each other, we call the line of nodes.
We define the nodes of the orbit with reference to the nodes of the Celestial Equator: the line of nodes of Earth's orbit consists of that straight line passing through the center of the sun that lies parallel to the straight line passing through the two points where Earth's Equator crosses the Ecliptic plane.
Equation 25, describing the path that the small body traces around the large one, also describes a conic section of eccentricity e.
orbit equation: Information from Answers.com (857 words)
This should be distinguished from the parabolic orbit in the sense of astrodynamics, where the velocity is the escape velocity.
Consider orbits which are at one point horizontal, near the surface of the Earth.
Extending this to orbits which are horizontal at another height, and orbits of which the extrapolation is horizontal below the surface of the Earth, we get a categorization of all orbits, except the radial trajectories, for which, by the way, the orbit equation can not be used.
  More results at FactBites »

 
 

COMMENTARY     


Share your thoughts, questions and commentary here
Your name
Your comments

Want to know more?
Search encyclopedia, statistics and forums:

 


Press Releases |  Feeds | Contact
The Wikipedia article included on this page is licensed under the GFDL.
Images may be subject to relevant owners' copyright.
All other elements are (c) copyright NationMaster.com 2003-5. All Rights Reserved.
Usage implies agreement with terms, 1022, m