FACTOID # 29: 73.3% of America's gross operating surplus in motion picture and sound recording industries comes from California.
 
 Home   Encyclopedia   Statistics   States A-Z   Flags   Maps   FAQ   About 
 
WHAT'S NEW
RELATED ARTICLES
People who viewed "Meitnerium" also viewed:
 

SEARCH ALL

FACTS & STATISTICS    Advanced view

Search encyclopedia, statistics and forums:

 

 

(* = Graphable)

 

 


Encyclopedia > Meitnerium
109 hassiummeitneriumdarmstadtium
Ir

Mt

(Upe)
General
Name, Symbol, Number meitnerium, Mt, 109
Chemical series transition metals
Group, Period, Block 9, 7, d
Appearance unknown, probably silvery
white or metallic gray
Standard atomic weight [276] g·mol−1
Electron configuration perhaps [Rn] 5f14 6d7 7s2
(guess based on iridium)
Electrons per shell 2, 8, 18, 32, 32, 15, 2
Phase presumably a solid
CAS registry number 54038-01-6
Selected isotopes
Main article: Isotopes of meitnerium
iso NA half-life DM DE (MeV) DP
276Mt syn 0.72 s α 9.71 272Bh
275Mt syn 9.7 ms α 10.33 271Bh
274Mt syn 0.44 s α 9.76 270Bh
270mMt ? syn 1.1 s α 266Bh
270gMt syn 5 ms α 10.03 266Bh
268Mt syn 42 ms α 10.26,10.10 264Bh
266Mt syn 1.7 ms α 11.00 262Bh
References

Meitnerium (pronounced /maɪtˈnɜriəm/) is a chemical element in the periodic table that has the symbol Mt and atomic number 109. General Name, Symbol, Number hassium, Hs, 108 Chemical series transition metals Group, Period, Block 8, 7, d Appearance unknown, probably silvery white or metallic gray Atomic mass (269) g/mol Electron configuration perhaps [Rn] 5f14 6d6 7s2 (guess based on osmium) Electrons per shell 2, 8, 18, 32, 32, 14... General Name, Symbol, Number darmstadtium, Ds, 110 Chemical series transition metals Group, Period, Block 10, 7, d Appearance unknown, probably silvery white or metallic gray Atomic mass (281) g/mol Electron configuration perhaps [Rn] 5f14 6d9 7s1 (guess based on platinum) Electrons per shell 2, 8, 18, 32, 32, 17... This article is about the chemical element. ... Image File history File links Download high resolution version (900x270, 22 KB) Image taken from en: Authors: Daniel Mayer (en:User:Maveric149) and/or Arnaud Gaillard (fr:Utilisateur:Greatpatton) File links The following pages link to this file: Meitnerium User:Femto/elements e10 ... This is a standard display of the periodic table of the elements. ... An extended periodic table was suggested by Glenn T. Seaborg in 1969. ... This is a list of chemical elements, sorted by name and color coded according to type of element. ... A table of chemical elements ordered by atomic number and color coded according to type of element. ... A group, also known as a family, is a vertical column in the periodic table of the chemical elements. ... In chemistry, the term transition metal (sometimes also called a transition element) has two possible meanings: It commonly refers to any element in the d-block of the periodic table, including zinc, cadmium and mercury. ... A group, also known as a family, is a vertical column in the periodic table of the chemical elements. ... In the periodic table of the elements, a period is a horizontal row of the table. ... A block of the periodic table of elements is a set of adjacent groups. ... The Group 9 elements are: Cobalt (27) Rhodium (45) Iridium (77) Meitnerium (109) Color coding for these atomic numbers: At room temperature, all are solid; red indicates item is synthetic and does not occur naturally. ... A period 7 element is one of the chemical elements in the seventh row (or period) of the periodic table of the elements. ... D Block is a rap group based in Yonkers, New York. ... Color is an important part of the visual arts. ... The atomic mass (ma) is the mass of an atom at rest, most often expressed in unified atomic mass units. ... Electron atomic and molecular orbitals In atomic physics and quantum chemistry, the electron configuration is the arrangement of electrons in an atom, molecule, or other physical structure (, a crystal). ... For other uses, see Radon (disambiguation). ... This article is about the chemical element. ... For other uses, see Electron (disambiguation). ... Example of a sodium electron shell model An electron shell, also known as a main energy level, is a group of atomic orbitals with the same value of the principal quantum number n. ... In the physical sciences, a phase is a set of states of a macroscopic physical system that have relatively uniform chemical composition and physical properties (i. ... This box:      For other uses, see Solid (disambiguation). ... CAS registry numbers are unique numerical identifiers for chemical compounds, polymers, biological sequences, mixtures and alloys. ... Meitnerium (Mt) has no stable isotopes. ... For other uses, see Isotope (disambiguation). ... Natural abundance refers to the prevalence of different isotopes of an element as found in nature. ... Half-Life For a quantity subject to exponential decay, the half-life is the time required for the quantity to fall to half of its initial value. ... In physics, the decay mode describes a particular way a particle decays. ... The decay energy is the energy released by a nuclear decay. ... The electronvolt (symbol eV) is a unit of energy. ... In nuclear physics, a decay product, also known as a daughter product, is a nuclide resulting from the radioactive decay of a parent or precursor nuclide. ... A Synthetic radioisotope is a radionuclide that is not found in nature: no natural process or mechanism exists which produces it, or it is so unstable that it decays away in a very short period of time. ... Alpha decay is a form of radioactive decay in which an atomic nucleus ejects an alpha particle and transforms into a nucleus with mass number 4 less and atomic number 2 less. ... A Synthetic radioisotope is a radionuclide that is not found in nature: no natural process or mechanism exists which produces it, or it is so unstable that it decays away in a very short period of time. ... A Synthetic radioisotope is a radionuclide that is not found in nature: no natural process or mechanism exists which produces it, or it is so unstable that it decays away in a very short period of time. ... A Synthetic radioisotope is a radionuclide that is not found in nature: no natural process or mechanism exists which produces it, or it is so unstable that it decays away in a very short period of time. ... A Synthetic radioisotope is a radionuclide that is not found in nature: no natural process or mechanism exists which produces it, or it is so unstable that it decays away in a very short period of time. ... A Synthetic radioisotope is a radionuclide that is not found in nature: no natural process or mechanism exists which produces it, or it is so unstable that it decays away in a very short period of time. ... A Synthetic radioisotope is a radionuclide that is not found in nature: no natural process or mechanism exists which produces it, or it is so unstable that it decays away in a very short period of time. ... Recommended values for many properties of the elements, together with various references, are collected on these data pages. ... The periodic table of the chemical elements A chemical element, or element, is a type of atom that is distinguished by its atomic number; that is, by the number of protons in its nucleus. ... The Periodic Table redirects here. ... See also: List of elements by atomic number In chemistry and physics, the atomic number (also known as the proton number) is the number of protons found in the nucleus of an atom. ...

Meitnerium

Common English pronunciation of meitnerium
Problems listening to the file? See media help.

Mt is a synthetic element whose most stable isotope, Mt-278, has a predicted half-life of a half-hour. The chemical elements labelled as synthetic are unstable, with a half-life so short (ranging from a fraction of millisecond to a few million years) relative to the age of the Earth that any atoms of that element that may have been present when the Earth formed have long since... Half-Life For a quantity subject to exponential decay, the half-life is the time required for the quantity to fall to half of its initial value. ...

Contents

Discovery profile

Meitnerium was first synthesized on August 29, 1982 by a German research team led by Peter Armbruster and Gottfried Münzenberg at the Institute for Heavy Ion Research (Gesellschaft für Schwerionenforschung) in Darmstadt.[1] The team bombarded a target of bismuth-209 with accelerated nuclei of iron-58 and detected a single atom of the isotope meitnerium-266: This article or section should be merged with Timeline of chemical element discovery The story of the discoveries of the chemical elements is presented here in chronological order. ... is the 241st day of the year (242nd in leap years) in the Gregorian calendar. ... Year 1982 (MCMLXXXII) was a common year starting on Friday (link displays the 1982 Gregorian calendar). ... Peter Armbruster (born July 25 1931 in Dachau, Bavaria) is a physicist at the Gesellschaft für Schwerionenforschung (GSI) facility in Darmstadt, Germany, and is credited with discovering elements 108 Hassium, 109 Meitnerium, 110 (darmstadtium), 111 (roentgenium), and 112 (ununbium). ... Gottfried Münzenberg (born 1940 in Nordhausen, Germany) is a German physicist. ... The Gesellschaft für Schwerionenforschung mbH (GSI, Institute for Heavy Ion Research) in Wixhausen, a suburb of Darmstadt, Germany is a federally funded heavy ion research center. ... For other uses, see Darmstadt (disambiguation). ... General Name, Symbol, Number bismuth, Bi, 83 Chemical series poor metals Group, Period, Block 15, 6, p Appearance lustrous pink Standard atomic weight 208. ... Fe redirects here. ... For other uses, see Isotope (disambiguation). ...

, ^{209}_{83}mathrm{Bi} + , ^{58}_{26}mathrm{Fe} , to , ^{266}_{109}mathrm{Mt} + , ^{1}_{0}mathrm{n}

Proposed names

Historically, element 109 has been referred to as eka-iridium. Professor Dimitri Mendeleev published the first Periodic Table of the Atomic Elements in 1869 based on properties which appeared with some regularity as he laid out the elements from lightest to heaviest. ... This article is about the chemical element. ...


The name meitnerium (Mt) was suggested in honor of the Austrian physicist and mathematician Lise Meitner, but there was an element naming controversy as to what the elements from 101 to 109 were to be called; thus IUPAC adopted unnilennium (/ˌjuːnɪˈlɛniəm/[2] or /ˌʌːnɪˈlɛniəm/, symbol Une) as a temporary, systematic element name. In 1997, however, the dispute was resolved and the current name was adopted. Lise Meitner ca. ... The names for the chemical elements 104 to 109 were the subject of a major controversy starting in the 1960s which was finally resolved in 1997. ... The International Union of Pure and Applied Chemistry (IUPAC) is an international non-governmental organization devoted to the advancement of chemistry. ... In chemistry, heavy transuranic elements receive a permanent trivial name and symbol only after their synthesis has been confirmed. ... For the band, see 1997 (band). ...


Electronic structure


Meitnerium is element 109 in the Periodic Table. The two forms of the projected electronic structure are:


Bohr model: 2, 8, 18, 32, 32, 15, 2


Quantum mechanical model: 1s22s22p63s23p64s23d10 4p65s24d105p66s24f145d10 6p67s25f146d7


Extrapolated chemical properties of meitnerium

Oxidation states

Meitnerium is projected to be the sixth member of the 6d series of transition metals and the heaviest member of group 9 in the Periodic Table, below cobalt, rhodium and iridium. This group of transition metals is the first to show lower oxidation states and the +IX state is not known. The latter two members of the group show a maximum oxidation state of +VI, whilst the most stable states are +IV and +III for iridium and +III for rhodium. Meitnerium is therefore expected to form a stable +III state but may also portray stable +IV and +VI states. For other uses, see Cobalt (disambiguation). ... General Name, Symbol, Number rhodium, Rh, 45 Chemical series transition metals Group, Period, Block 9, 5, d Appearance silvery white metallic Standard atomic weight 102. ... This article is about the chemical element. ... In chemistry, the term transition metal (sometimes also called a transition element) has two possible meanings: It commonly refers to any element in the d-block of the periodic table, including zinc, cadmium and mercury. ...


Chemistry

The +VI state is known only for the fluorides which are formed by direct reaction. Therefore, meitnerium should form a hexafluoride, MtF6. This fluoride is expected to be more stable than iridium(VI) fluoride, as the +VI state becomes more stable as the group is descended. In combination with oxygen, rhodium forms Rh2O3 whilst iridium is oxidised to the +IV state in IrO2. Meitnerium may therefore show a dioxide MtO2 if eka-iridium reactivity is shown. The +III state is common in the trihalides (not fluorides) formed by direct reaction with halogens. Meitnerium should therefore form MtCl3, MtBr3 and MtI3 in an analogous manner to iridium. This article is about the chemical series. ...


History of synthesis of isotopes in cold fusion

209Bi(58Fe,xn)267-xMt (x=1)

The first success in this reaction was in 1982 by the GSI team in their discovery experiment with the identification of a single atom of 266Mt in the 1n neutron evaporation channel.[1] The GSI team used the parent-daughter correlation technique. After an initial failure in 1983, in 1985 the team at the FLNR, Dubna, observed alpha decays from the descendant 246Cf indicating the formation of meitnerium. The GSI synthesised a further 2 atoms of 266Mt in 1988 and continued in 1997 with the detection of 12 atoms during the measurement of the 1n excitation function. [3] [4] GSI may refer to: Geological Survey of India Geological Survey of Iran Geophysical Service Incorporated, petroleum exploration corporation Gesellschaft für Schwerionenforschung, ion research laboratory Gemological Science International GSI Outdoors, outdoors cookware company Grid Security Infrastructure Government Secure Intranet, the system for managing secure access to e-mail and other...


208Pb(59Co,xn)267-xMt (x=1)

This reaction was first studied in 1985 by the team in Dubna. They were able to detect the alpha decay of the descendant 246Cf nuclei indicating the formation of meitnerium atoms. In 2007, in a continuation of their study of the effect of odd-Z projectiles on yields of evaporation residues in cold fusion reactions, the team at LBNL synthesised 266Mt and were able to correlate the decay with known daughters.


181Ta(86Kr,xn)267-xMt

There are indications that this cold fusion reaction using a tantalum target was attempted in August 2001 at the GSI. No details can be found suggesting that no atoms of meitnerium were detected. General Name, Symbol, Number tantalum, Ta, 73 Chemical series transition metals Group, Period, Block 5, 6, d Appearance gray blue Standard atomic weight 180. ...


History of synthesis by hot fusion reactions

238U(37Cl,xn)275-xMt

In 2002-2003, the team at LBNL attempted the above reaction in order to search for the isotope 271Mt with hope that it may be sufficiently stable to allow a first study of the chemical properties of meitnerium. Unfortunately, no atoms were detected and a cross section limit of 1.5 pb was measured for the 4n channel at the projectile energy used. [5]


254Es(22Ne,xn)276-xMt

Attempts to produce long-living isotopes of meitnerium were first performed by Ken Hulet at the Lawrence Livermore National Laboratory (LLNL) in 1988 using the asymmetric hot fusion reaction above. They were unable to detect any product atoms and established a cross section limit of 1 nb.[6]


Synthesis of isotopes as decay products

Isotopes of meitnerium have also been detected in the decay of heavier elements. Observations to date are shown in the table below:

Evaporation Residue Observed Mt isotope
288115 276Mt
287115 275Mt
282113 274Mt
278113 270Mt
272Rg 268Mt

Chronology of isotope discovery

Isotope Year discovered discovery reaction
266Mt 1982 209Bi(58Fe,n)[1]
267Mt unknown
268Mt 1994 209Bi(64Ni,n)[7]
269Mt unknown
270Mt 2004 209Bi(70Zn,n)[8]
271Mt unknown
272Mt unknown
273Mt unknown
274Mt 2006 237Np(48Ca,3n)[8]
275Mt 2003 243Am(48Ca,4n)[9]
276Mt 2003 243Am(48Ca,3n)[9]

Chemical yields of isotopes

Cold Fusion

The table below provides cross-sections and excitation energies for cold fusion reactions producing meitnerium isotopes directly. Data in bold represents maxima derived from excitation function measurements. + represents an observed exit channel.

Projectile Target CN 1n 2n 3n
58Fe 209Bi 267Mt 7.5 pb
59Co 208Pb 267Mt 2.6 pb , 14.9 MeV

Isomerism in meitnerium nuclides

270Mt

Two atoms of 270Mt have been identified in the decay chains of 278113. The two decays have very different lifetimes and decay energiesand are also produced from two apparently different isomers in 274Rg. The first isomer decays by emission of an 10.03 MeV alpha particle with a lifetime 7.2 ms. The other decays by emitting an alpha particle with a lifetime of 1.63 s. An assignment to specific levels is not possible with the limited data available. Further research is required.


268Mt

The alpha decay spectrum for 268Mt appears to be complicated from the results of several experiments. Alpha lines of 10.28,10.22 ans 10.10 MeV have been observed. Half-lives of 42 ms, 21 ms and 102 ms have been determined. The long-lived decay is associated with alpha particles of energy 10.10 MeV and must be assigned to an isomeric level. The discrepancy between the other two half-lives has yet to be resolved. An assignment to specific levels is not possible with the data available and further research is required.


References

  1. ^ a b c "Observation of one correlated α-decay in the reaction 58Fe on 209Bi→267109", Munzenberg et al., Z. Phys. A., 1982, 309, 1. Retrieved on 2008-03-01
  2. ^ unnilennium - Definitions from Dictionary.com
  3. ^ "New results on element 109", Munzenberg et al., Z. Phys. A., 1988, 330, 4. Retrieved on 2008-03-01
  4. ^ "Excitation function for the production of 265108 and 266109", Hofmann et al., Z. Phys. A., 1997, 358, 4. Retrieved on 2008-03-01
  5. ^ "The search for 271Mt via the reaction 238U + 37Cl", Zielinski et al., GSI Annual report, 2003. Retrieved on 2008-03-01
  6. ^ see reference 4 for reference to an internal report from LLNL
  7. ^ see roentgenium for details
  8. ^ a b see ununtrium for details
  9. ^ a b see ununpentium for details

2008 (MMVIII) is the current year, a leap year that started on Tuesday of the Common Era (or Anno Domini), in accordance with the Gregorian calendar. ... is the 60th day of the year (61st in leap years) in the Gregorian calendar. ... 2008 (MMVIII) is the current year, a leap year that started on Tuesday of the Common Era (or Anno Domini), in accordance with the Gregorian calendar. ... is the 60th day of the year (61st in leap years) in the Gregorian calendar. ... 2008 (MMVIII) is the current year, a leap year that started on Tuesday of the Common Era (or Anno Domini), in accordance with the Gregorian calendar. ... is the 60th day of the year (61st in leap years) in the Gregorian calendar. ... 2008 (MMVIII) is the current year, a leap year that started on Tuesday of the Common Era (or Anno Domini), in accordance with the Gregorian calendar. ... is the 60th day of the year (61st in leap years) in the Gregorian calendar. ... General Name, Symbol, Number roentgenium, Rg, 111 Chemical series transition metals Group, Period, Block 11, 7, d Appearance unknown, probably yellow or orange metallic Atomic mass (284) g/mol Electron configuration perhaps [Rn] 5f14 6d10 7s1 (guess based on gold) Electrons per shell 2, 8, 18, 32, 32, 18, 1... General Name, Symbol, Number ununtrium, Uut, 113 Chemical series presumably poor metals Group, Period, Block 13, 7, p Appearance unknown, probably silvery white or metallic gray Atomic mass (284) g/mol Electron configuration perhaps [Rn] 5f14 6d10 7s2 7p1 (guess based on thallium) Electrons per shell 2, 8, 18, 32... General Name, Symbol, Number ununpentium, Uup, 115 Group, Period, Block 15, 7, p Atomic mass (299) g·mol−1 Electron configuration perhaps [Rn] 5f14 6d10 7s2 7p3 (guess based on bismuth) Electrons per shell 2, 8, 18, 32, 32, 18, 5 CAS registry number 54085-64-2 Selected isotopes References...

External links

  • WebElements.com - Meitnerium
  • Apsidium - Meitnerium
The Periodic Table redirects here. ... This article is about the chemistry of hydrogen. ... General Name, symbol, number helium, He, 2 Chemical series noble gases Group, period, block 18, 1, s Appearance colorless Standard atomic weight 4. ... This article is about the chemical element. ... General Name, symbol, number beryllium, Be, 4 Chemical series alkaline earth metals Group, period, block 2, 2, s Appearance white-gray metallic Standard atomic weight 9. ... For other uses, see Boron (disambiguation). ... For other uses, see Carbon (disambiguation). ... General Name, symbol, number nitrogen, N, 7 Chemical series nonmetals Group, period, block 15, 2, p Appearance colorless gas Standard atomic weight 14. ... This article is about the chemical element and its most stable form, or dioxygen. ... Distinguished from fluorene and fluorone. ... For other uses, see Neon (disambiguation). ... For sodium in the diet, see Salt. ... General Name, symbol, number magnesium, Mg, 12 Chemical series alkaline earth metals Group, period, block 2, 3, s Appearance silvery white solid at room temp Standard atomic weight 24. ... Aluminum redirects here. ... Not to be confused with Silicone. ... General Name, symbol, number phosphorus, P, 15 Chemical series nonmetals Group, period, block 15, 3, p Appearance waxy white/ red/ black/ colorless Standard atomic weight 30. ... This article is about the chemical element. ... General Name, symbol, number chlorine, Cl, 17 Chemical series nonmetals Group, period, block 17, 3, p Appearance yellowish green Standard atomic weight 35. ... General Name, symbol, number argon, Ar, 18 Chemical series noble gases Group, period, block 18, 3, p Appearance colorless Standard atomic weight 39. ... General Name, symbol, number potassium, K, 19 Chemical series alkali metals Group, period, block 1, 4, s Appearance silvery white Standard atomic weight 39. ... For other uses, see Calcium (disambiguation). ... General Name, symbol, number scandium, Sc, 21 Chemical series transition metals Group, period, block 3, 4, d Appearance silvery white Standard atomic weight 44. ... General Name, symbol, number titanium, Ti, 22 Chemical series transition metals Group, period, block 4, 4, d Appearance silvery grey-white metallic Standard atomic weight 47. ... General Name, symbol, number vanadium, V, 23 Chemical series transition metals Group, period, block 5, 4, d Appearance silver-grey metal Standard atomic weight 50. ... REDIRECT [[ Insert text]]EWWWWWWWWWWWWW YO General Name, symbol, number chromium, Cr, 24 Chemical series transition metals Group, period, block 6, 4, d Appearance silvery metallic Standard atomic weight 51. ... General Name, symbol, number manganese, Mn, 25 Chemical series transition metals Group, period, block 7, 4, d Appearance silvery metallic Standard atomic weight 54. ... Fe redirects here. ... For other uses, see Cobalt (disambiguation). ... For other uses, see Nickel (disambiguation). ... For other uses, see Copper (disambiguation). ... General Name, symbol, number zinc, Zn, 30 Chemical series transition metals Group, period, block 12, 4, d Appearance bluish pale gray Standard atomic weight 65. ... Not to be confused with Galium. ... General Name, Symbol, Number germanium, Ge, 32 Chemical series metalloids Group, Period, Block 14, 4, p Appearance grayish white Standard atomic weight 72. ... General Name, Symbol, Number arsenic, As, 33 Chemical series metalloids Group, Period, Block 15, 4, p Appearance metallic gray Standard atomic weight 74. ... For other uses, see Selenium (disambiguation). ... Bromo redirects here. ... For other uses, see Krypton (disambiguation). ... General Name, Symbol, Number rubidium, Rb, 37 Chemical series alkali metals Group, Period, Block 1, 5, s Appearance grey white Standard atomic weight 85. ... General Name, Symbol, Number strontium, Sr, 38 Chemical series alkaline earth metals Group, Period, Block 2, 5, s Appearance silvery white metallic Standard atomic weight 87. ... General Name, Symbol, Number yttrium, Y, 39 Chemical series transition metals Group, Period, Block 3, 5, d Appearance silvery white Standard atomic weight 88. ... General Name, Symbol, Number zirconium, Zr, 40 Chemical series transition metals Group, Period, Block 4, 5, d Appearance silvery white Standard atomic weight 91. ... General Name, Symbol, Number niobium, Nb, 41 Chemical series transition metals Group, Period, Block 5, 5, d Appearance gray metallic Standard atomic weight 92. ... General Name, Symbol, Number molybdenum, Mo, 42 Chemical series transition metals Group, Period, Block 6, 5, d Appearance gray metallic Standard atomic weight 95. ... General Name, Symbol, Number technetium, Tc, 43 Chemical series transition metals Group, Period, Block 7, 5, d Appearance silvery gray metal Standard atomic weight [98](0) g·mol−1 Electron configuration [Kr] 4d5 5s2 Electrons per shell 2, 8, 18, 13, 2 Physical properties Phase solid Density (near r. ... General Name, Symbol, Number Ruthenium, Ru, 44 Chemical series transition metals Group, Period, Block 8, 5, d Appearance silvery white metallic Standard atomic weight 101. ... General Name, Symbol, Number rhodium, Rh, 45 Chemical series transition metals Group, Period, Block 9, 5, d Appearance silvery white metallic Standard atomic weight 102. ... For other uses, see Palladium (disambiguation). ... This article is about the chemical element. ... General Name, Symbol, Number cadmium, Cd, 48 Chemical series transition metals Group, Period, Block 12, 5, d Appearance silvery gray metallic Standard atomic weight 112. ... General Name, Symbol, Number indium, In, 49 Chemical series poor metals Group, Period, Block 13, 5, p Appearance silvery lustrous gray Standard atomic weight 114. ... This article is about the metallic chemical element. ... This article is about the element. ... General Name, Symbol, Number tellurium, Te, 52 Chemical series metalloids Group, Period, Block 16, 5, p Appearance silvery lustrous gray Standard atomic weight 127. ... For other uses, see Iodine (disambiguation). ... General Name, Symbol, Number xenon, Xe, 54 Chemical series noble gases Group, Period, Block 18, 5, p Appearance colorless Standard atomic weight 131. ... General Name, Symbol, Number caesium, Cs, 55 Chemical series alkali metals Group, Period, Block 1, 6, s Appearance silvery gold Standard atomic weight 132. ... For other uses, see Barium (disambiguation). ... General Name, Symbol, Number lanthanum, La, 57 Chemical series lanthanides Group, Period, Block 3, 6, f Appearance silvery white Atomic mass 138. ... General Name, Symbol, Number cerium, Ce, 58 Chemical series lanthanides Group, Period, Block n/a, 6, f Appearance silvery white Standard atomic weight 140. ... General Name, Symbol, Number praseodymium, Pr, 59 Chemical series lanthanides Group, Period, Block n/a, 6, f Appearance grayish white Standard atomic weight 140. ... General Name, Symbol, Number neodymium, Nd, 60 Chemical series lanthanides Group, Period, Block n/a, 6, f Appearance silvery white, yellowish tinge Standard atomic weight 144. ... General Name, Symbol, Number promethium, Pm, 61 Chemical series lanthanides Group, Period, Block n/a, 6, f Appearance metallic Atomic mass [145](0) g/mol Electron configuration [Xe] 4f5 6s2 Electrons per shell 2, 8, 18, 23, 8, 2 Physical properties Phase solid Density (near r. ... General Name, Symbol, Number samarium, Sm, 62 Chemical series lanthanides Group, Period, Block n/a, 6, f Appearance silvery white Atomic mass 150. ... General Name, Symbol, Number gadolinium, Gd, 64 Chemical series lanthanides Group, Period, Block n/a, 6, f Appearance silvery white Standard atomic weight 157. ... General Name, Symbol, Number terbium, Tb, 65 Chemical series lanthanides Group, Period, Block n/a, 6, f Appearance silvery white Atomic mass 158. ... General Name, Symbol, Number dysprosium, Dy, 66 Chemical series lanthanides Group, Period, Block n/a, 6, f Appearance silvery white Standard atomic weight 162. ... General Name, Symbol, Number holmium, Ho, 67 Chemical series lanthanides Group, Period, Block n/a, 6, f Appearance silvery white Atomic mass 164. ... General Name, Symbol, Number erbium, Er, 68 Chemical series lanthanides Group, Period, Block n/a, 6, f Appearance silvery white Standard atomic weight 167. ... General Name, Symbol, Number thulium, Tm, 69 Chemical series lanthanides Group, Period, Block ?, 6, f Appearance silvery gray Atomic mass 168. ... Yb redirects here; for the unit of information see Yottabit General Name, Symbol, Number ytterbium, Yb, 70 Chemical series lanthanides Group, Period, Block n/a, 6, f Appearance silvery white Standard atomic weight 173. ... General Name, Symbol, Number lutetium, Lu, 71 Chemical series lanthanides Group, Period, Block n/a, 6, d Appearance silvery white Standard atomic weight 174. ... General Name, Symbol, Number hafnium, Hf, 72 Chemical series transition metals Group, Period, Block 4, 6, d Appearance grey steel Standard atomic weight 178. ... General Name, Symbol, Number tantalum, Ta, 73 Chemical series transition metals Group, Period, Block 5, 6, d Appearance gray blue Standard atomic weight 180. ... For other uses, see Tungsten (disambiguation). ... General Name, Symbol, Number rhenium, Re, 75 Chemical series transition metals Group, Period, Block 7, 6, d Appearance grayish white Standard atomic weight 186. ... General Name, Symbol, Number osmium, Os, 76 Chemical series transition metals Group, Period, Block 8, 6, d Appearance silvery, blue cast Standard atomic weight 190. ... This article is about the chemical element. ... General Name, Symbol, Number platinum, Pt, 78 Chemical series transition metals Group, Period, Block 10, 6, d Appearance grayish white Standard atomic weight 195. ... GOLD refers to one of the following: GOLD (IEEE) is an IEEE program designed to garner more student members at the university level (Graduates of the Last Decade). ... This article is about the element. ... General Name, Symbol, Number thallium, Tl, 81 Chemical series poor metals Group, Period, Block 13, 6, p Appearance silvery white Standard atomic weight 204. ... General Name, Symbol, Number lead, Pb, 82 Chemical series Post-transition metals or poor metals Group, Period, Block 14, 6, p Appearance bluish gray Standard atomic weight 207. ... General Name, Symbol, Number bismuth, Bi, 83 Chemical series poor metals Group, Period, Block 15, 6, p Appearance lustrous pink Standard atomic weight 208. ... General Name, Symbol, Number polonium, Po, 84 Chemical series metalloids Group, Period, Block 16, 6, p Appearance silvery Standard atomic weight (209) g·mol−1 Electron configuration [Xe] 6s2 4f14 5d10 6p4 Electrons per shell 2, 8, 18, 32, 18, 6 Physical properties Phase solid Density (near r. ... General Name, Symbol, Number astatine, At, 85 Chemical series halogens Group, Period, Block 17, 6, p Appearance metallic (presumed) Standard atomic weight (210) g·mol−1 Electron configuration [Xe] 4f14 5d10 6s2 6p5 Electrons per shell 2, 8, 18, 32, 18, 7 Physical properties Phase solid Melting point 575 K... For other uses, see Radon (disambiguation). ... General Name, Symbol, Number francium, Fr, 87 Chemical series alkali metals Group, Period, Block 1, 7, s Appearance metallic Standard atomic weight (223) g·mol−1 Electron configuration [Rn] 7s1 Electrons per shell 2, 8, 18, 32, 18, 8, 1 Physical properties Phase  ? solid Density (near r. ... For other uses, see Radium (disambiguation). ... General Name, Symbol, Number actinium, Ac, 89 Chemical series actinides Group, Period, Block 3, 7, f Appearance silvery Standard atomic weight (227) g·mol−1 Electron configuration [Rn] 6d1 7s2 Electrons per shell 2, 8, 18, 32, 18, 9, 2 Physical properties Phase solid Density (near r. ... General Name, Symbol, Number thorium, Th, 90 Chemical series Actinides Group, Period, Block n/a, 7, f Appearance silvery white Standard atomic weight 232. ... General Name, Symbol, Number protactinium, Pa, 91 Chemical series actinides Group, Period, Block n/a, 7, f Appearance bright, silvery metallic luster Standard atomic weight 231. ... This article is about the chemical element. ... General Name, Symbol, Number neptunium, Np, 93 Chemical series actinides Group, Period, Block n/a, 7, f Appearance silvery metallic Standard atomic weight (237) g·mol−1 Electron configuration [Rn] 5f4 6d1 7s2 Electrons per shell 2, 8, 18, 32, 22, 9, 2 Physical properties Phase solid Density (near r. ... This article is about the radioactive element. ... General Name, Symbol, Number americium, Am, 95 Chemical series actinides Group, Period, Block n/a, 7, f Appearance silvery white sometimes yellow Standard atomic weight (243) g·mol−1 Electron configuration [Rn] 5f7 7s2 Electrons per shell 2, 8, 18, 32, 25, 8, 2 Physical properties Phase solid Density (near... General Name, Symbol, Number curium, Cm, 96 Chemical series actinides Group, Period, Block ?, 7, f Appearance silvery Atomic mass (247) g/mol Electron configuration [Rn] 5f7 6d1 7s2 Electrons per shell 2, 8, 18, 32, 25, 9, 2 Physical properties Phase solid Density (near r. ... General Name, Symbol, Number berkelium, Bk, 97 Chemical series actinides Group, Period, Block n/a, 7, f Appearance unknown, probably silvery white or metallic gray Atomic mass (247) g·mol−1 Electron configuration [Rn] 5f9 7s2 Electrons per shell 2, 8, 18, 32, 27, 8, 2 Physical properties Phase solid... General Name, Symbol, Number californium, Cf, 98 Chemical series actinides Group, Period, Block n/a, 7, f Appearance silvery Standard atomic weight (251) g·mol−1 Electron configuration [Rn] 5f10 7s2 Electrons per shell 2, 8, 18, 32, 28, 8, 2 Physical properties Phase solid Density (near r. ... General Name, Symbol, Number einsteinium, Es, 99 Chemical series actinides Group, Period, Block n/a, 7, f Appearance unknown, probably silvery white or metallic gray Standard atomic weight (252) g·mol−1 Electron configuration [Rn] 5f11 7s2 Electrons per shell 2, 8, 18, 32, 29, 8, 2 Physical properties Phase... General Name, Symbol, Number fermium, Fm, 100 Chemical series actinides Group, Period, Block n/a, 7, f Appearance unknown, probably silvery white or metallic gray Atomic mass (257) g·mol−1 Electron configuration [Rn] 5f12 7s2 Electrons per shell 2, 8, 18, 32, 30, 8, 2 Physical properties Phase solid... General Name, Symbol, Number mendelevium, Md, 101 Chemical series actinides Group, Period, Block n/a, 7, f Appearance unknown, probably silvery white or metallic gray Atomic mass (258) g·mol−1 Electron configuration [Rn] 5f13 7s2 Electrons per shell 2, 8, 18, 32, 31, 8, 2 Physical properties Phase solid... General Name, Symbol, Number nobelium, No, 102 Chemical series actinides Group, Period, Block n/a, 7, f Appearance unknown, probably silvery white or metallic gray Atomic mass (259) g/mol Electron configuration [Rn] 5f14 7s2 Electrons per shell 2, 8, 18, 32, 32, 8, 2 Physical properties Phase solid Melting... General Name, Symbol, Number lawrencium, Lr, 103 Chemical series transition metals Group, Period, Block n/a, 7, d Appearance unknown, probably silvery white or metallic gray Standard atomic weight [262] g·mol−1 Electron configuration [Rn] 5f14 6d1 7s2 Electrons per shell 2, 8, 18, 32, 32, 9, 2 Physical... General Name, Symbol, Number rutherfordium, Rf, 104 Chemical series transition metals Group, Period, Block 4, 7, d Standard atomic weight (265) g·mol−1 Electron configuration probably [Rn] 5f14 6d2 7s2 Electrons per shell 2, 8, 18, 32, 32, 10, 2 Physical properties Phase presumably a solid Density (near r. ... General Name, Symbol, Number dubnium, Db, 105 Chemical series transition metals Group, Period, Block 5, 7, d Appearance unknown, probably silvery white or metallic gray Atomic mass (262) g/mol Electron configuration perhaps [Rn] 5f14 6d3 7s2 (guess based on tantalum) Electrons per shell 2, 8, 18, 32, 32, 11... General Name, Symbol, Number seaborgium, Sg, 106 Chemical series transition metals Group, Period, Block 6, 7, d Appearance unknown, probably silvery white or metallic gray Atomic mass (266) g/mol Electron configuration perhaps [Rn] 5f14 6d4 7s2 (guess based on tungsten) Electrons per shell 2, 8, 18, 32, 32, 12... General Name, Symbol, Number bohrium, Bh, 107 Chemical series transition metals Group, Period, Block 7, 7, d Appearance unknown, probably silvery white or metallic gray Atomic mass (264) g/mol Electron configuration perhaps [Rn] 5f14 6d5 7s2 (guess based on rhenium) Electrons per shell 2, 8, 18, 32, 32, 13... General Name, Symbol, Number hassium, Hs, 108 Chemical series transition metals Group, Period, Block 8, 7, d Appearance unknown, probably silvery white or metallic gray Atomic mass (269) g/mol Electron configuration perhaps [Rn] 5f14 6d6 7s2 (guess based on osmium) Electrons per shell 2, 8, 18, 32, 32, 14... General Name, Symbol, Number darmstadtium, Ds, 110 Chemical series transition metals Group, Period, Block 10, 7, d Appearance unknown, probably silvery white or metallic gray Atomic mass (281) g/mol Electron configuration perhaps [Rn] 5f14 6d9 7s1 (guess based on platinum) Electrons per shell 2, 8, 18, 32, 32, 17... General Name, Symbol, Number roentgenium, Rg, 111 Chemical series transition metals Group, Period, Block 11, 7, d Appearance unknown, probably yellow or orange metallic Atomic mass (284) g/mol Electron configuration perhaps [Rn] 5f14 6d10 7s1 (guess based on gold) Electrons per shell 2, 8, 18, 32, 32, 18, 1... General Name, Symbol, Number ununbium, Uub, 112 Chemical series transition metals Group, Period, Block 12, 7, d Appearance unknown, probably silvery white or metallic gray liquid Atomic mass (285) g/mol Electron configuration perhaps [Rn] 5f14 6d10 7s2 (guess based on mercury) Electrons per shell 2, 8, 18, 32, 32... General Name, Symbol, Number ununtrium, Uut, 113 Chemical series presumably poor metals Group, Period, Block 13, 7, p Appearance unknown, probably silvery white or metallic gray Atomic mass (284) g/mol Electron configuration perhaps [Rn] 5f14 6d10 7s2 7p1 (guess based on thallium) Electrons per shell 2, 8, 18, 32... General Name, Symbol, Number ununquadium, Uuq, 114 Chemical series presumably poor metals Group, Period, Block 14, 7, p Appearance unknown, probably silvery white or metallic gray Standard atomic weight [289] g·mol−1 Electron configuration perhaps [Rn] 5f14 6d10 7s2 7p2 (guess based on lead) Electrons per shell 2, 8... General Name, Symbol, Number ununpentium, Uup, 115 Group, Period, Block 15, 7, p Atomic mass (299) g·mol−1 Electron configuration perhaps [Rn] 5f14 6d10 7s2 7p3 (guess based on bismuth) Electrons per shell 2, 8, 18, 32, 32, 18, 5 CAS registry number 54085-64-2 Selected isotopes References... General Name, Symbol, Number ununhexium, Uuh, 116 Chemical series presumably poor metals Group, Period, Block 16, 7, p Appearance unknown, probably silvery white or metallic gray Atomic mass (302) g/mol Electron configuration perhaps [Rn] 5f14 6d10 7s2 7p4 (guess based on polonium) Electrons per shell 2, 8, 18, 32... General Name, Symbol, Number ununseptium, Uus, 117 Chemical series presumably halogens Group, Period, Block 17, 7, p Appearance unknown, probably dark metallic Standard atomic weight predicted, (310) g·mol−1 Electron configuration perhaps [Rn] 5f14 6d10 7s2 7p5 (guess based on astatine) Electrons per shell 2, 8, 18, 32, 32... General Name, Symbol, Number ununoctium, Uuo, 118 Chemical series noble gases Group, Period, Block 18, 7, p Appearance unknown, probably colorless Atomic mass predicted, (314) g/mol Electron configuration perhaps [Rn] 5f14 6d10 7s2 7p6 (guess based on radon) Electrons per shell 2, 8, 18, 32, 32, 18, 8 Phase... The alkali metals are a series of elements comprising Group 1 (IUPAC style) of the periodic table: lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr). ... The alkaline earth metals are a series of elements comprising Group 2 (IUPAC style) of the periodic table: beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) and radium (Ra). ... The lanthanide (or lanthanoid) series comprises the 15 elements with atomic numbers 57 through 71, from lanthanum to lutetium[1]. All lanthanides are f-block elements, corresponding to the filling of the 4f electron shell, except for lutetium which is a d-block lanthanide. ... The actinide series encompasses the 14 chemical elements that lie between actinium and nobelium on the periodic table with atomic numbers 89 - 102 inclusive. ... This article is in need of attention. ... This article is about metallic materials. ... Metalloid is a term used in chemistry when classifying the chemical elements. ... Together with the metals and metalloids, a nonmetal is one of three categories of chemical elements as distinguished by ionization and bonding properties. ... This article is about the chemical series. ... This article is about the chemical series. ...

  Results from FactBites:
 
WebElements Periodic Table of the Elements | Meitnerium | Essential information (404 words)
Brief description: element 109, meitnerium, is a synthetic element that is not present in the environment at all.
Isolation of an observable quantity of meitnerium has never been achieved, and may well never be.
This is because meitnerium decays very rapidly through the emission of α-particles.
Meitnerium (Mt) - Chemical properties, Health and Environmental effects (142 words)
None of meitnerium's chemistry has been researched, but it should resemble other elements of group 9, like iridium.
Meitnerium does not have any known application and little is known about it.
Meitnerium is not found free in the environment, since it is a synthetic element.
  More results at FactBites »

 
 

COMMENTARY     


Share your thoughts, questions and commentary here
Your name
Your comments

Want to know more?
Search encyclopedia, statistics and forums:

 


Press Releases |  Feeds | Contact
The Wikipedia article included on this page is licensed under the GFDL.
Images may be subject to relevant owners' copyright.
All other elements are (c) copyright NationMaster.com 2003-5. All Rights Reserved.
Usage implies agreement with terms, 1022, m