FACTOID # 24: Looking for table makers? Head to Mississippi, with an overwhlemingly large number of employees in furniture manufacturing.
 
 Home   Encyclopedia   Statistics   States A-Z   Flags   Maps   FAQ   About 
   
 
WHAT'S NEW
RELATED ARTICLES
People who viewed "Magnoliophyta" also viewed:
 

SEARCH ALL

FACTS & STATISTICS    Advanced view

Search encyclopedia, statistics and forums:

 

 

(* = Graphable)

 

 


Encyclopedia > Magnoliophyta
Magnoliophyta (Flowering plants)

Magnolia flower
Scientific classification
Kingdom: Plantae
Division: Magnoliophyta
Classes

Magnoliopsida - Dicots
Liliopsida - Monocots


The flowering plants (also angiosperms or Magnoliophyta) are one of the major groups of modern plants, comprising those that produce seeds in specialized reproductive organs called flowers, where the ovulary or carpel is enclosed. The other seed plants are called gymnosperms; here the ovule is not enclosed at pollination.

Contents

History

The botanical term "Angiosperm" (Greek: ἀγγεῖον, receptacle, and σπέρμα, seed) was coined in the form Angiospermae by Paul Hermann in 1690, as the name of that one of his primary divisions of the plant kingdom, which included flowering plants possessing seeds enclosed in capsules, in contradistinction to his Gymnospermae, or flowering plants with achenial or schizo-carpic fruits—the whole fruit or each of its pieces being here regarded as a seed and naked. The term and its antonym were maintained by Linnaeus with the same sense, but with restricted application, in the names of the orders of his class Didynamia. Its use with any approach to its modern scope only became possible after Robert Brown had established in 1827 the existence of truly naked ovules in the Cycadeae and Coniferae, entitling them to be correctly called Gymnosperms. From that time onwards, so long as these Gymnosperms were, as was usual, reckoned as dicotyledonous flowering plants, the term Angiosperm was used antithetically by botanical writers, but with varying limitation, as a group-name for other dicotyledonous plants.


The advent in 1851 of Hofmeister's brilliant discovery of the changes proceeding in the embryo-sac of flowering plants, and his determination of the correct relationships of these with the Cryptogamia, fixed the position of Gymnosperms as a class distinct from Dicotyledons, and the term Angiosperm then gradually came to be accepted as the suitable designation for the whole of the flowering plants other than Gymnosperms, and as including therefore the classes of Dicotyledons and Monocotyledons. This is the sense in which the term is nowadays received and in which it is used here.


Origins

The trend of the evolution of the plant kingdom has been in the direction of the establishment of a vegetation of fixed habit and adapted to the vicissitudes of a life on land, and the Angiosperms are the highest expression of this evolution and constitute the dominant vegetation of the earth's surface at the present epoch. There is no land-area from the poles to the equator, where plant-life is possible, upon which Angiosperms are not found. They occur also abundantly in the shallows of rivers and fresh-water lakes, and in less number in salt lakes and in the sea; such aquatic Angiosperms are not, however, primitive forms, but are derived from immediate land-ancestors. Associated with this diversity of habitat is great variety in general form and manner of growth. The familiar duckweed which covers the surface of a pond consists of a tiny green "thalloid" shoot, one, that is, which shows no distinction of parts—stem and leaf, and a simple root growing vertically downwards into the water. The great forest-tree has a shoot, which in the course perhaps of hundreds of years, has developed a wide-spreading system of trunk and branches, bearing on the ultimate twigs or branchlets innumerable leaves, while beneath the soil a widely-branching root-system covers an area of corresponding extent. Between these two extremes is every conceivable gradation, embracing aquatic and terrestrial herbs, creeping, erect or climbing in habit, shrubs and trees, and representing a much greater variety than is to be found in the other subdivision of seed-plants, the Gymnosperms.


The first evidence of angiosperms appears in the fossil record approximately 140 million years ago, during the Jurassic period (203-135 million years ago). Based on current evidence, it is seems that the ancestors of the angiosperms and the Gnetophytes diverged from one another during the late Triassic (220-202 million years ago). Fossil plants with some identifiable angiosperm characteristics appear in the Jurassic and early Cretaceous (135-65 million years ago), but in relatively few and primitive forms. The great angiosperm radiation, when a great diversity of angiosperms appear in the fossil record, occurred in the mid-Cretaceous (approximately 100 million years ago). By the late Cretaceous, angiosperms appear to have become the predominant group of land plants, and many fossil plants recognizable as belonging to modern families (including beech, oak, maple, and magnolia) appeared.


Classification

The flowering plants are usually treated as a division, formerly called the Angiospermatophyta or Anthophyta, but now called Magnoliophyta after the type genus Magnolia. Their classification has undergone considerable revision as ideas about their relationships change. The Cronquist system, proposed by Arthur Cronquist in 1981, is still widely used but is no longer believed to reflect phylogeny. A general consensus about how the flowering plants should be arranged has only recently begun to emerge, through the work of the Angiosperm Phylogeny Group, who published an influential reclassification of the angiosperms in 1998. An update incorporating more recent research was published as APG (2003) and is available here Wikipedia Tree of Life/Update of the Angiosperm Phylogeny Group.


Traditionally, the flowering plants are divided into the dicotyledons and monocotyledons (called dicots and monocots for short). This is based mainly on the number of cotyledons or embryonic leaves within the seeds, but there are a number of other differences. These groups are typically ranked as classes, formerly called Dicotyledoneae and Monocotyledoneae, but now respectively named Class Magnoliopsida and Class Liliopsida after the type genus in each case.


Studies show that the monocots are monophyletic, and the dicots are paraphyletic to them. However, the majority belong to a monophyletic subgroup called the eudicotyledons or tricolpates, distinguished most notably by the form of the pollen. Since newer systems tend to avoid paraphyletic groups, these may be treated as a separate Class Rosopsida, or split into several different classes. The Magnoliopsida would then be restricted to the basal dicots or palaeodicotyledons, a paraphyletic group which may also be further divided.


The most diverse families of flowering plants, in order of number of species, are:

Enlarge
Bumblebee pollinating an Asteraceae flower
  1. Asteraceae (Daisy family): 25,000 species
  2. Orchidaceae (Orchid family): 20,000 (possibly 30,000)
  3. Fabaceae (Pea family): 17,000
  4. Poaceae (Grass family): 9,000
  5. Rubiaceae (Madder family): 7,000
  6. Euphorbiaceae (Spurge family): 5,000
  7. Malvaceae (Mallow family): 4,300
  8. Cyperaceae (Sedge family): 4,000

In the list above (showing only the 8 largest families), the Orchidaceae, Poaceae, and Cyperaceae are monocot families; the others are dicot families. The total number of families in the Magnoliophyta is over 460.


Internal structure

In internal structure the variety of tissue-formation far exceeds that found in Gymnosperms (see Plant). The vascular bundles of the stem belong to the collateral type, that is to say, the elements of the wood or xylem and the bast or phloem stand side by side on the same radius. In the larger of the two great groups into which the Angiosperms are divided, the Dicotyledons, the bundles in the very young stem are arranged in an open ring, separating a central pith from an outer cortex. In each bundle, separating the xylem and phloem, is a layer of meristem or active formative tissue, known as cambium; by the formation of a layer of cambium between the bundles (interfascicular cambium) a complete ring is formed, and a regular periodical increase in thickness results from it by the development of xylem on the inside and phloem on the outside. The soft phloem soon becomes crushed, but the hard wood persists, and forms the great bulk of the stem and branches of the woody perennial. Owing to differences in the character of the elements produced at the beginning and end of the season, the wood is marked out in transverse section into concentric rings, one for each season of growth—the so-called annual rings. In the smaller group, the Monocotyledons, the bundles are more numerous in the young stem and scattered through the ground tissue. Moreover they contain no cambium and the stem once formed increases in diameter only in exceptional cases.


Vegetative organs

As in Gymnosperms, branching is monopodial; dichotomy or the forking of the growing point into two equivalent branches which replace the main stem, is absent both in the case of the stem and the root. The leaves show a remarkable variety in form, but are generally small in comparison with the size of the plant; exceptions occur in some Monocotyledons, e.g. in the Aroid family, where in some genera the plant produces one huge, much-branched leaf each season.


In rare cases the main axis is unbranched and ends in a flower, as, for instance, in the tulip, where scale-leaves, forming the underground bulb, green foliage-leaves and coloured floral leaves are borne on one and the same axis. Generally, flowers are formed only on shoots of a higher order, often only on the ultimate branches of a much branched system. A potential branch or bud, either foliage or flower, is formed in the axil of each leaf; sometimes more than one bud arises, as for instance in the walnut, where two or three stand in vertical series above each leaf. Many of the buds remain dormant, or are called to development under exceptional circumstances, such as the destruction of existing branches. For instance, the clipping of a hedge or the lopping of a tree will cause to develop numerous buds which may have been dormant for years. Leaf-buds occasionally arise from the roots, when they are called adventitious; this occurs in many fruit trees, poplars, elms and others. For instance, the young shoots seen springing from the ground around an elm are not seedlings but root-shoots. Frequently, as in many Dicotyledons, the primary root, the original root of the seedling, persists throughout the life of the plant, forming, as often in biennials, a thickened tap-root, as in carrot, or in perennials, a much-branched root system. In many Dicotyledons and most Monocotyledons, the primary root soon perishes, and its place is taken by adventitious roots developed from the stem.


Flower

Main article: Flower

The most characteristic feature of the Angiosperm is the flower, which shows remarkable variety in form and elaboration, and supplies the most trustworthy characters for the distinction of the series and families or natural orders, into which the group is divided. The flower is a shoot (stem bearing leaves) which has a special form associated with the special function of ensuring the fertilization of the egg and the development of fruit containing seed. Except where it is terminal it arises, like the leaf-shoot, in the axil of a leaf, which is then known as a bract. Occasionally, as in violet, a flower arises singly in the axil of an ordinary foliage-leaf; it is then termed axillary. Generally, however, the flower-bearing portion of the plant is sharply distinguished from the foliage leaf-bearing or vegetative portion, and forms a more or less elaborate branch-system in which the bracts are small and scale-like. Such a branch-system is called an inflorescence. The primary function of the flower is to bear the spores. These, as in Gymnosperms, are of two kinds, microspores or pollen-grains, borne in the stamens (or microsporophylls) and megaspores, in which the egg-cell is developed, contained in the ovule, which is borne enclosed in the carpel (or megasporophyll). The flower may consist only of spore-bearing leaves, as in willow, where each flower comprises only a few stamens or two carpels. Usually, however, other leaves are present which are only indirectly concerned with the reproductive process, acting as protective organs for the sporophylls or forming an attractive envelope. These form the perianth and are in one series, when the flower is termed monochlamydeous, or in two series (dichlamydeous). In the second case the outer series (calyx of sepals) is generally green and leaf-like, its function being to protect the rest of the flower, especially in the bud; while the inner series (corolla of petals) is generally white or brightly coloured, and more delicate in structure, its function being to attract the particular insect or bird by agency of which pollination is effected. The insect, &c., is attracted by the colour and scent of the flower, and frequently also by honey which is secreted in some part of the flower.


Flowering plant sexuality

Flowers are the reproductive organs of flowering plants. The "male" part is the stamen or androecium, which produces pollen (male gametes) in the anthers. The "female" organ is the carpel or gynoecium, which contains the egg (female gamete) and is the site of fertilization. While the majority of flowers are perfect or hermaphrodite (having both male and female parts in the same flower structure), flowering plants have developed numerous morphological and physiological mechanisms to reduce or prevent self-fertilization. Heteromorphic flowers have short carpels and long stamens, or vice versa, so animal pollinators cannot easily transfer pollen to the pistil (receptive part of the carpel). Homomorphic flowers may employ a biochemical (physiological) mechanism called self-incompatibility to discriminate between self- and non-self pollen grains. In other species, the male and female parts are morphologically separated, developing on different flowers.


Stamen and pollen

Each stamen generally bears four pollen-sacs (microsporangia) which are associated to form the anther, and carried up on a stalk or filament. The development of the microsporangia and the contained spores (pollen-grains) is closely comparable with that of the microsporangia in Gymnosperms or heterosporous ferns. The pollen is set free by the opening (dehiscence) of the anther, generally by means of longitudinal slits, but sometimes by pores, as in the heath family (Ericaceae), or by valves, as in the barberry. It is then dropped or carried by some external agent, wind, water or some member of the animal kingdom, on to the receptive surface of the carpel of the same or another flower. The carpel, or aggregate of carpels forming the pistil or gynaeceum, comprises an ovary containing one or more ovules and a receptive surface or stigma; the stigma is sometimes carried up on a style.


The mature pollen-grain is, like other spores, a single cell; except in the case of some submerged aquatic plants, it has a double wall, a thin delicate wall of unaltered cellulose, the endospore or intine, and a tough outer cuticularized exospore or extine. The exospore often bears spines or warts, or is variously sculptured, and the character of the markings is often of value for the distinction of genera or higher groups. Germination of the microspore begins before it leaves the pollen-sac. In very few cases has anything representing prothallial development been observed; generally a small cell (the antheridial or generative cell) is cut off, leaving a larger tube-cell. When placed on the stigma, under favourable circumstances, the pollen-grain puts forth a pollen-tube which grows down the tissue of the style to the ovary, and makes its way along the placenta, guided by projections or hairs, to the mouth of an ovule. The nucleus of the tube-cell has meanwhile passed into the tube, as does also the generative nucleus which divides to form two male- or sperm-cells. The male-cells are carried to their destination in the tip of the pollen-tube.


Pistil and embryo-sac

The ovary contains one or more ovules borne on a placenta, which is generally some part of the ovary-wall. The development of the ovule, which represents the macrosporangium, is very similar to the process in Gymnosperms; when mature it consists of one or two coats surrounding the central nucellus, except at the apex where an opening, the micropyle, is left. The nucellus is a cellular tissue enveloping one large cell, the embryo-sac or macrospore. The germination of the macrospore consists in the repeated division of its nucleus to form two groups of four, one group at each end of the embryo-sac. One nucleus from each group, the polar nucleus, passes to the centre of the sac, where the two fuse to form the so-called definitive nucleus. Of the three cells at the micropylar end of the sac, all naked cells (the so-called egg-apparatus), one is the egg-cell or oosphere, the other two, which may be regarded as representing abortive egg-cells (in rare cases capable of fertilization), are known as synergidae. The three cells at the opposite end are known as antipodal cells and become invested with a cell-wall. The gametophyte or prothallial generation is thus extremely reduced, consisting of but little more than the male and female sexual cells—the two sperm-cells in the pollen-tube and the egg-cell (with the synergidae) in the embryo-sac.


Fertilization

At the period of fertilization the embryo-sac lies in close proximity to the opening of the micropyle, into which the pollen-tube has penetrated, the separating cell-wall becomes absorbed, and the male or sperm-cells are ejected into the embryo-sac. Guided by the synergidae one male-cell passes into the oosphere with which it fuses, the two nuclei uniting, while the other fuses with the definitive nucleus, or, as it is also called, the endosperm nucleus. This remarkable double fertilization as it has been called, although only recently discovered, has been proved to take place in widely-separated families, and both in Monocotyledons and Dicotyledons, and there is every probability that, perhaps with variations, it is the normal process in Angiosperms. After impregnation the fertilized oosphere immediately surrounds itself with a cell-wall and becomes the oospore which by a process of growth forms the embryo of the new plant. The endosperm-nucleus divides rapidly to produce a cellular tissue which fills up the interior of the rapidly-growing embryo-sac, and forms a tissue, known as endosperm, in which is stored a supply of nourishment for the use later on of the embryo.


It has long been known that after fertilization of the egg has taken place, the formation of endosperm begins from the endosperm nucleus, and this had come to be regarded as the recommencement of the development of a prothallium after a pause following the reinvigorating union of the polar nuclei. This view is still maintained by those who differentiate two acts of fertilization within the embryo-sac, and regard that of the egg by the first male-cell, as the true or generative fertilization, and that of the polar nuclei by the second male gamete as a vegetative fertilization which gives a stimulus to development in correlation with the other. If, on the other hand, the endosperm is the product of an act of fertilization as definite as that giving rise to the embryo itself, we have to recognize that twin-plants are produced within the embryo-sac—one, the embryo, which becomes the angiospermous plant, the other, the endosperm, a short-lived, undifferentiated nurse to assist in the nutrition of the former, even as the subsidiary embryos in a pluri-embryonic Gymnosperm may facilitate the nutrition of the dominant one. If this is so, and the endosperm like the embryo is normally the product of a sexual act, hybridization will give a hybrid endosperm as it does a hybrid embryo, and herein (it is suggested) we may have the explanation of the phenomenon of xenia observed in the mixed endosperms of hybrid races of maize and other plants, regarding which it has only been possible hitherto to assert that they were indications of the extension of the influence of the pollen beyond the egg and its product. This would not, however, explain the formation of fruits intermediate in size and colour between those of crossed parents. The signification of the coalescence of the polar nuclei is not explained by these new facts, but it is noteworthy that the second male-cell is said to unite sometimes with the apical polar nucleus, the sister of the egg, before the union of this with the basal polar one.


The idea of the endosperm as a second subsidiary plant is no new one; it was suggested long ago in explanation of the coalescence of the polar nuclei, but it was then based on the assumption that these represented male and female cells, an assumption for which there was no evidence and which was inherently improbable. The proof of a coalescence of the second male nucleus with the definitive nucleus gives the conception a more stable basis. The antipodal cells aid more or less in the process of nutrition of the developing embryo, and may undergo multiplication, though they ultimately disintegrate, as do also the synergidae. As in Gymnosperms and other groups an interesting qualitative change is associated with the process of fertilization. The number of chromosomes (see Plant citology) in the nucleus of the two spores, pollen-grain and embryo-sac, is only half the number found in an ordinary vegetative nucleus; and this reduced number persists in the cells derived from them. The full number is restored in the fusion of the male and female nuclei in the process of fertilization, and remains until the formation of the cells from which the spores are derived in the new generation.


In several natural orders and genera departures from the course of development just described have been noted. In the natural order Rosaceae, the series Querciflorae, and the very anomalous genus Casuarina and others, instead of a single macrospore a more or less extensive sporogenous tissue is formed, but only one cell proceeds to the formation of a functional female cell. In Casuarina, Juglans and the order Corylaceae, the pollen-tube does not enter by means of the micropyle, but passing down the ovary wall and through the placenta, enters at the chalazal end of the ovule. Such a method of entrance is styled chalazogamic, in contrast to the porogamic or ordinary method of approach by means of the micropyle.


Embryology

The result of fertilization is the development of the ovule into the seed. By the segmentation of the fertilized egg, now invested by cell-membrane, the embryo-plant arises. A varying number of transverse segment-walls transform it into a pro-embryo—a cellular row of which the cell nearest the micropyle becomes attached to the apex of the embryo-sac, and thus fixes the position of the developing embryo, while the terminal cell is projected into its cavity. In Dicotyledons the shoot of the embryo is wholly derived from the terminal cell of the pro-embryo, from the next cell the root arises, and the remaining ones form the suspensor. In many Monocotyledons the terminal cell forms the cotyledonary portion alone of the shoot of the embryo, its axial part and the root being derived from the adjacent cell; the cotyledon is thus a terminal structure and the apex of the primary stem a lateral one—a condition in marked contrast with that of the Dicotyledons. In some Monocotyledons, however, the cotyledon is not really terminal. The primary root of the embryo in all Angiosperms points towards the micropyle. The developing embryo at the end of the suspensor grows out to a varying extent into the forming endosperm, from which by surface absorption it derives good material for growth; at the same time the suspensor plays a direct part as a carrier of nutrition, and may even develop, where perhaps no endosperm is formed, special absorptive "suspensor roots" which invest the developing embryo, or pass out into the body and coats of the ovule, or even into the placenta. In some cases the embryo or the embryo-sac sends out suckers into the nucellus and ovular integument. As the embryo develops it may absorb all the food material available, and store, either in its cotyledons or in its hypocotyl, what is not immediately required for growth, as reserve-food for use in germination, and by so doing it increases in size until it may fill entirely the embryo-sac; or its absorptive power at this stage may be limited to what is necessary for growth and it remains of relatively small size, occupying but a small area of the embryo-sac, which is otherwise filled with endosperm in which the reserve-food is stored. There are also intermediate states. The position of the embryo in relation to the endosperm varies, sometimes it is internal, sometimes external, but the significance of this has not yet been established.


The formation of endosperm starts, as has been stated, from the endosperm nucleus. Its segmentation always begins before that of the egg, and thus there is timely preparation for the nursing of the young embryo. If in its extension to contain the new formations within it the embryo-sac remains narrow, endosperm formation proceeds upon the lines of a cell-division, but in wide embryo-sacs the endosperm is first of all formed as a layer of naked cells around the wall of the sac, and only gradually acquires a pluricellular character, forming a tissue filling the sac. The function of the endosperm is primarily that of nourishing the embryo, and its basal position in the embryo-sac places it favourably for the absorption of food material entering the ovule. Its duration varies with the precocity of the embryo. It may be wholly absorbed by the progressive growth of the embryo within the embryo-sac, or it may persist as a definite and more or less conspicuous constituent of the seed. When it persists as a massive element of the seed its nutritive function is usually apparent, for there is accumulated within its cells reserve-food, and according to the dominant substance it is starchy, oily, or rich in cellulose, mucilage or proteid. In cases where the embryo has stored reserve food within itself and thus provided for self-nutrition, such endosperm as remains in the seed may take on other functions, for instance, that of water-absorption.


Some deviations from the usual course of development may be noted. Parthenogenesis, or the development of an embryo from an egg-cell without the latter having been fertilized, has been described in species of Thalictrum, Antennaria and Alchemilla. Polyembryony is generally associated with the development of cells other than the egg-cell. Thus in Erythronium and Limnocharis the fertilized egg may form a mass of tissue on which several embryos are produced. Isolated cases show that any of the cells within the embryo-sac may exceptionally form an embryo, e.g. the synergidae in species of Mimosa, Iris and Allium, and in the last-mentioned the antipodal cells also. In Coelebogyne (Euphorbiaceae) and in Funkia (Liliaceae) polyembryony results from an adventitious production of embryos from the cells of the nucellus around the top of the embryo-sac. In a species of Allium, embryos have been found developing in the same individual from the egg-cell, synergids, antipodal cells and cells of the nucellus. In two Malayan species of Balanophora, the embryo is developed from a cell of the endosperm, which is formed from the upper polar nucleus only, the egg apparatus becoming disorganized. The last-mentioned case has been regarded as representing an apogamous development of the sporophyte from the gametophyte comparable to the cases of apogamy described in Ferns. But the great diversity of these abnormal cases as shown in the examples cited above suggests the use of great caution in formulating definite morphological theories upon them.


Fruit and seed

As the development of embryo and endosperm proceeds within the embryo-sac, its wall enlarges and commonly absorbs the substance of the nucellus (which is likewise enlarging) to near its outer limit, and combines with it and the integument to form the seed-coat; or the whole nucellus and even the integument may be absorbed. In some plants the nucellus is not thus absorbed, but itself becomes a seat of deposit of reserve-food constituting the perisperm which may coexist with endosperm, as in the water-lily order, or may alone form a food-reserve for the embryo, as in Canna. Endospermic food-reserve has evident advantages over perispermic, and the latter is comparatively rarely found and only in non-progressive series. Seeds in which endosperm or perisperm or both exist are commonly called albuminous or endospermic, those in which neither is found are termed exalbuminous or exendospermic. These terms, extensively used by systematists, only refer, however, to the grosser features of the seed, and indicate the more or less evident occurrence of a food-reserve; many so-called exalbuminous seeds show to microscopic examination a distinct endosperm which may have other than a nutritive function. The presence or absence of endosperm, its relative amount when present, and the position of the embryo within it, are valuable characters for the distinction of orders and groups of orders. Meanwhile the ovary wall has developed to form the fruit or pericarp, the structure of which is closely associated with the manner of distribution of the seed. Frequently the influence of fertilization is felt beyond the ovary, and other parts of the flower take part in the formation of the fruit, as the floral receptacle in the apple, strawberry and others. The character of the seed-coat bears a definite relation to that of the fruit. Their function is the twofold one of protecting the embryo and of aiding in dissemination; they may also directly promote germination. If the fruit is a dehiscent one and the seed is therefore soon exposed, the seed-coat has to provide for the protection of the embryo and may also have to secure dissemination. On the other hand, indehiscent fruits discharge these functions for the embryo, and the seed-coat is only slightly developed.


Economic importance

Flowering plants provide a very high percentage of the base food for human use, whether directly or through livestock feed. Of all the families of flowering plants, the Poaceae, or grass family, is by far the most important, providing the bulk of all feedstocks (rice, corn (maize), wheat, barley, rye, oats, millet, sugar cane, sorghum), with the Fabaceae, or legume family, in second place. Also of high importance are the Solanaceae, or nightshade family (potatoes, tomatoes, and peppers, among others), the Cucurbitaceae, or gourd family (also including pumpkins and melons), the Brassicaceae, or mustard family (including rapeseed and cabbage), and the Apiaceae, or parsley family. Many of our fruits come from the Rutaceae, or rue family, and the Rosaceae (rose family, including apples, pears, cherries, apricots, plums, etc).


In some parts of the world, certain single species assume paramount importance because of their variety of uses. An example is the coconut (Cocos nucifera) on Pacific atolls. Another example is the olive (Olea europaea) in the Mediterranean.


Flowering plants also provide economic resources in the form of wood, paper, fiber (cotton, flax, and hemp, among others), medicines (digitalis, camphor), decorative and landscaping plants, and many, many other uses.


See also

References and external links

  • Angiosperm Phylogeny Group (2003). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society, 141, 399-436. Available online (http://www.blackwell-synergy.com/links/doi/10.1046/j.1095-8339.2003.t01-1-00158.x/full/)
  • Angiosperms (http://tolweb.org/tree?group=Angiosperms&contgroup=Spermatopsida) – Tree of Life Web Project
  • Cronquist, Arthur. (1981) An Integrated System of Classification of Flowering Plants. Columbia Univ. Press, New York.
  • Oldest Known Flowering Plants Identified By Genes (http://www.news.harvard.edu/gazette/1999/12.16/angiosperms.html), William J. Cromie, Harvard Gazette, December 16, 1999.
  • Stevens, P.F. (2001 onwards). Angiosperm Phylogeny Website (http://www.mobot.org/MOBOT/Research/APweb/welcome.html) at Missouri Botanical Garden.
  • Delta Families of Flowering Plants (http://biodiversity.uno.edu/delta/angio)

This article incorporates text from the public domain 1911 Encyclopędia Britannica.


  Results from FactBites:
 
Magnoliophyta - Encyclopedia.com (0 words)
Magnoliophyta, division of the plant kingdom consisting of those organisms commonly called the flowering plants, or angiosperms.
Cyperaceae, and Juncaceae) forbs (non-woody Magnoliophyta, excluding graminoids, ferns and fern...
Magnoliophyta means a flowering plant that produces seeds in an ovary...
References used to compile Northern Arizona Flora catalog (628 words)
Flora of North America Editorial Committee, Nancy R. Morin, Convening Editor Flora of North America North of Mexico: Volume 3, Magnoliophyta: Magnoliidae and Hamamelidae.
Flora of North America Editorial Committee Flora of North America North of Mexico: Volume 22, Magnoliophyta: Alismatidae, Arecidae, Commelinidae (in part), and Zingiberidae.
Flora of North America Editorial Committee Flora of North America North of Mexico: Volume 26, Magnoliophyta: Liliidae: Liliales and Orchidales.
  More results at FactBites »

 
 

COMMENTARY     


Share your thoughts, questions and commentary here
Your name
Your comments

Want to know more?
Search encyclopedia, statistics and forums:

 


Press Releases |  Feeds | Contact
The Wikipedia article included on this page is licensed under the GFDL.
Images may be subject to relevant owners' copyright.
All other elements are (c) copyright NationMaster.com 2003-5. All Rights Reserved.
Usage implies agreement with terms, 1022, m