FACTOID # 22: South Dakota has the highest employment ratio in America, but the lowest median earnings of full-time male employees.
 
 Home   Encyclopedia   Statistics   States A-Z   Flags   Maps   FAQ   About 
   
 
WHAT'S NEW
RELATED ARTICLES
People who viewed "Loudspeaker" also viewed:
 

SEARCH ALL

FACTS & STATISTICS    Advanced view

Search encyclopedia, statistics and forums:

 

 

(* = Graphable)

 

 


Encyclopedia > Loudspeaker
An inexpensive low fidelity 3.5 inch speaker, typically found in small radios
An expensive 4-way, high fidelity loudspeaker system.
An expensive 4-way, high fidelity loudspeaker system.

A loudspeaker, speaker, or speaker system is an electromechanical transducer that converts an electrical signal to sound. The term loudspeaker can refer to individual devices (otherwise known as drivers), or to complete systems consisting of an enclosure incorporating one or more drivers and additional electronic components. Loudspeakers, as with other electro-acoustic transducers, are the most variable elements in an audio system and are responsible for the greatest degree of audible differences between sound systems. Image File history File linksMetadata Download high-resolution version (1024x768, 166 KB)By Richard Wheeler (Zephyris) 2007. ... Image File history File linksMetadata Download high-resolution version (1024x768, 166 KB)By Richard Wheeler (Zephyris) 2007. ... Image File history File links Download high-resolution version (1092x1800, 830 KB) de: Lautsprecher, 4-Wege en: Loudspeaker, 4-Ways Author: Tobias Rütten, Metoc File links The following pages on the English Wikipedia link to this file (pages on other projects are not listed): Loudspeaker ... Image File history File links Download high-resolution version (1092x1800, 830 KB) de: Lautsprecher, 4-Wege en: Loudspeaker, 4-Ways Author: Tobias Rütten, Metoc File links The following pages on the English Wikipedia link to this file (pages on other projects are not listed): Loudspeaker ... In engineering, electromechanics combines the sciences of electromagnetism of electrical engineering and mechanics. ... This article is about transducers in engineering. ... Electricity (from New Latin ēlectricus, amberlike) is a general term for a variety of phenomena resulting from the presence and flow of electric charge. ... Signal processing is the processing, amplification and interpretation of signals, and deals with the analysis and manipulation of signals. ... This article is about audible acoustic waves. ... A loudspeaker enclosure is a cabinet designed to transmit sound to the listener via mounted loudspeaker drive units. ... Audio crossovers are a class of electronic filters designed specifically for use in audio applications, especially hi-fi. ...


To reproduce a wide range of frequencies, most loudspeaker systems require more than one driver, particularly for high sound pressure level or high fidelity applications. Individual drivers are used to cover different frequency ranges. The drivers are named subwoofers, for very low frequencies; woofers, for low frequencies; mid-range speakers, for middle frequencies; tweeters, for high frequencies; and, also, the so-called supertweeters, which are basically tweeters optimized for higher frequencies than a normal tweeter. It has been suggested that this article or section be merged into Sound pressure. ... a 12 subwoofer driver A subwoofer refers to either a woofer, or a complete loudspeaker dedicated to the reproduction of bass audio frequencies, typically from 150 Hz down to 20 Hz. ... A Sony 9 inch woofer Woofer is the term for a loudspeaker driver that is designed to produce low frequency sounds, typically from around 40 hertz up to a few hundred hertz. ... A midrange speaker A loudspeaker driver that produces the frequency range from approximately 300–5000 hertz is known as a mid-range. ... A shielded Peerless v-line dome tweeter A tweeter is a driver designed to produce high frequencies, typically from around 2,000 hertz to 20,000 hertz (20,000 Hz is generally considered to be the upper limit of the human ear). ...


These terms for different speaker applications/ranges can differ widely depending on the application. Home stereos use the designation "tweeter" for high frequencies whereas professional audio systems for concerts typically designate all types of high frequency drivers simply as HF or "highs". High frequency compression driver units are also called "horns" in cases where the professional loudspeaker's lower frequency drivers are front-loaded. There is also a distinct difference in terminology between that used in the U.S. versus the U.K.


A "filter network", called a crossover separates the incoming signal into different frequency bands appropriate for each driver. A loudspeaker system with 'N' separate frequency bands is described as "N-way speakers": a 2-way system will have woofer and tweeter speakers; a 3-way system is a combination of a set of woofers, mid-range speakers, and tweeters(HF drivers).

Contents

History

Alexander Graham Bell patented the first electrical loudspeaker as part of his telephone in 1876, which was followed in 1878 by an improved version from Ernst Siemens. Nikola Tesla reportedly created a similar device in 1881, but was not issued as a patent.[1] During this time, Thomas Edison issued a British patent for a system using compressed air as an amplifying mechanism for his early cylinder phonographs, but he ultimately settled for the familiar metal horn driven by a membrane attached to the stylus. In 1898, Horace Short patented a design for a loudspeaker driven by compressed air, then sold the rights to Charles Parsons, who issued several additional British patents before 1910. Several companies, including Victor Talking Machine Company and Pathe, produced record players using compressed-air loudspeakers. However, these designs were significantly limited by their poor sound quality and their inability to reproduce sound at low-volume. Variants of the system were used for public address applications, and more recently other variations have been used to test space equipment resistance to the very loud sound levels that launching rockets produce (ca, 165 dB SPL). Alexander Graham Bell (3 March 1847 – 2 August 1922) was an eminent scientist, inventor and innovator who is credited with the invention of the telephone. ... Werner von Siemens Ernst Werner von Siemens (known as Werner von Siemens) (December 13, 1816 – December 6, 1892) was a German inventor and industrialist. ... Nikola Tesla (Serbian Cyrillic: ) (10 July 1856 – 7 January 1943) was a inventor, physicist, mechanical engineer, and electrical engineer. ... Edison redirects here. ... Charles Parsons might refer to: Charles Parsons (philosopher) who has made important contributions to the philosophy of mathematics Charles-Algernon-Parsons a British engineer known for his invention of the steam turbine Categories: Disambiguation ... Victor logo with the famous Nipper dog. ... Pathé or Pathé Frères is the name of various businesses founded and originally run by the Pathé Brothers of France. ... SPL is a three-letter abbreviation with multiple meanings, including: Sad Paki Loser Sound pressure level Scottish Premier League Standard PHP Library Sun Public License SugarCRM Public License SPL notation: Sentence Plan Language - a notation used in natural language processing Senior Patrol Leader SPL (computer science) short for Set Priority...


The modern design of moving-coil drivers was established by Oliver Lodge in (1898)[2]. The moving coil principle was patented in 1924 by Chester W. Rice and Edward W. Kellogg. Vanity Fair cartoon. ... Joint inventor of the moving coil loudspeaker along with Edward W. Kellog. ... Edward W. Kellogg was the joint inventor of the moving coil loudspeaker in 1925 along with Chester W. Rice at General Electric, and independently by Edward Wente at Bell Labs. ...


These first loudspeakers used electromagnets because large, powerful permanent magnets were generally not available at a reasonable price. The coil of an electromagnet, called a field coil, was energized by current through a second pair of connections to the driver. This winding usually served a dual role, acting also as a choke coil filtering the power supply of the amplifier to which the loudspeaker was connected. AC ripple in the current was attenuated by the action of passing through the choke coil; however, AC line frequencies tended to modulate the audio signal being sent to the voice coil and added to the audible hum of a powered-up sound reproduction device. An electromagnet is a type of magnet in which the magnetic field is produced by the flow of an electric current. ... Magnetic lines of force of a bar magnet shown by iron filings on paper A magnet is an object that has a magnetic field. ... An inductor is a passive electrical device employed in electrical circuits for its property of inductance. ... A wall wart style variable DC power supply with its cover removed. ... Mission Cyrus 1 Hi Fi integrated audio amplifier An audio amplifier is an electronic amplifier that amplifies low-power audio signals (signals composed primarily of frequencies between 20 hertz to 20,000 hertz, the human range of hearing) to a level suitable for driving loudspeakers and is the final stage...


The quality of loudspeaker systems until the 1950s was poor. Continuous developments in enclosure design and materials have led to significant audible improvements. The most notable improvements in modern speakers are improvements in cone materials, the introduction of higher temperature adhesives, improved permanent magnet materials, improved measurement techniques, computer aided design and finite element analysis.


Driver design

Cut-away view of a dynamic loudspeaker

The most common type of driver uses a lightweight diaphragm connected to a rigid basket, or frame, via flexible suspension that constrains a coil of fine wire to move axially through a cylindrical magnetic gap. When an electrical signal is applied to the voice coil, a magnetic field is created by the electric current in the coil which thus becomes an electromagnet. The coil and the driver's magnetic system interact, generating a mechanical force which causes the coil, and so the attached cone, to move back and forth and so reproduce sound under the control of the applied electrical signal coming from the amplifier. The following is a description of the individual components of this type of loudspeaker. Image File history File links This is a lossless scalable vector image. ... Image File history File links This is a lossless scalable vector image. ... In a loudspeaker, a diaphragm is the thin, semi-rigid membrane attached to the central magnet. ... A voice coil is the coil of wire attached to the apex of the moving cone of a loudspeaker. ... For the indie-pop band, see The Magnetic Fields. ... In electricity, current refers to electric current, which is the flow of electric charge. ... For the British rock band of the same name, see Amplifier (band). ...


The diaphragm is usually manufactured with a cone or dome shaped profile. A variety of different materials may be used, but the most common are paper, plastic and metal. The ideal material would be stiff, light and well damped. In practice, all three of these criteria cannot be met simultaneously, and thus driver design involves tradeoffs. For example, paper is light and well damped, but not stiff; metal can be made stiff and light, but it is not well damped; plastic can be light, but typically the stiffer it is made, the less well-damped it is. As a result, many cones are made of some sort of composite. This can either be a sandwich construction or simply a coating to stiffen or damp a cone. Absorption refers to the absorption of sound waves by a material. ...


The basket or frame must be designed for rigidity to avoid deformation, which will change the magnetic conditions in the magnet gap, and could even cause the voice coil to rub against the walls of the magnetic gap. Baskets are typically cast or stamped metal, although molded plastic baskets are becoming common, especially for inexpensive drivers. The frame also plays a considerable role in conducting heat away from the coil. This article is about the manufacturing process. ... Power press with a fixed barrier guard A press, or a machine press is a tool used to work metal (typically steel) by changing its shape and internal structure. ...


The suspension system keeps the coil centered in the gap and provides a restoring force to make the speaker cone return to a neutral position after moving. A typical suspension system consists of two parts: the "spider", which connects the diaphragm or voice coil to the frame and provides the majority of the restoring force; and the "surround", which helps center the coil/cone assembly and allows free movement aligned with the magnetic gap. The spider is usually made of a corrugated fabric disk. The surround can be a roll of rubber or foam or a ring of corrugated fabric, attached to the outer circumference of the cone and to the frame. This does not cite any references or sources. ... Sea foam on the beach Foam on a cappuccino Fire-retardant, foamed plastic being used as a temporary dam for firestop mortar in a cable penetration in a pulp and paper mill on Vancouver Island, British Columbia, Canada. ...


The voice coil wire is usually made of copper, though aluminum, and rarely silver, may be used. Voice coil wire cross sections can be circular, rectangular, or hexagonal, giving varying amounts of wire volume coverage in the magnetic gap space. The coil is oriented coaxially inside the gap, a small circular volume (a hole, slot, or groove) in the magnetic structure within which it can move back and forth. The gap establishes a concentrated magnetic field between the two poles of a permanent magnet; the outside of the gap being one pole and the center post (a.k.a., the pole-piece) being the other. The center post and back-plate are sometimes a single piece called the yoke. For other uses, see Copper (disambiguation). ... Aluminum is a soft and lightweight metal with a dull silvery appearance, due to a thin layer of oxidation that forms quickly when it is exposed to air. ... This article is about the chemical element. ...


Modern driver magnets are almost always permanent and made of ceramic, ferrite, Alnico, or, more recently, neodymium magnet. The size and type of magnet and the magnetic circuit differ depending on design goals. A current trend in design, due to increases in transportation costs and a desire for smaller, lighter devices (as in many home theater multi-speaker installations), is the use of neodymium magnet instead of ferrite types. This article is about ceramic materials. ... A stack of ferrite magnets Ferrites are electrically non-conductive ferrimagnetic ceramic compound materials, consisting of various mixtures of iron oxides such as Hematite (Fe2O3) or Magnetite (Fe3O4) and the oxides of other metals. ... Alnico is an acronym[1] referring to alloys which are composed primarily of aluminium (symbol Al), nickel (symbol Ni) and cobalt (symbol Co), hence al-ni-co, with the addition of iron, copper, and sometimes titanium, typically 8-12% Al, 15-26% Ni, 5-24% Co, up to 6% Cu... Neodymium magnet on a bracket from a hard drive A neodymium magnet or NIB magnet (also, but less specifically, called a rare-earth magnet) is a powerful magnet made of a combination of neodymium, iron, and boron — Nd2Fe14B. They have replaced marginally weaker and significantly more heat-resistant samarium-cobalt...


Driver design, and the combination of one or more drivers into an enclosure to make a speaker system, is both an art and science. Adjusting a design to improve performance is done using magnetic, acoustic, mechanical, electrical, and material science theory, high precision measurements, and the observations of experienced listeners. Designers can use an anechoic chamber to ensure the speaker can be measured independently of room effects, or any of several electronic techniques. Some developers eschew anechoic chambers in favor of specific standardized room setups intended to simulate real-life listening conditions. Some of the issues speaker designers must confront are distortion, lobing, phase effects, off axis response and crossover complications.


Most loudspeaker drivers are currently manufactured in China.[citation needed] The fabrication of finished loudspeaker systems is segmented, depending largely on price, shipping costs, and weight limitations. High-end speaker systems, which are heavier (and often larger) than economic shipping allows outside local regions, are usually made in their target market area and can cost $10,000 or more per pair. The lowest-priced speaker systems are mostly manufactured in China or other low-cost manufacturing locations. Although the manufacture of drivers has become essentially commoditized, the fabrication and subsequent sale of finished speaker systems still carries high profits. Partly for this reason, manufacturers are increasingly combining power amplifier electronics (a typically lower profit item) with finished speaker systems to create powered speakers with an overall higher market value. An active loudspeaker Powered speakers (or active speakers) are speakers that have built-in amplifiers. ...


Driver types

Exploded view of a dome tweeter
Exploded view of a dome tweeter

An audio engineering rule of thumb is that individual electrodynamic drivers provide quality performance only over about 3 octaves. Specialized drivers (i.e., subwoofers, woofers, mid-range drivers, tweeters) are used to evade the practical effects of this limitation, though in some cases, a woofer can work high enough to reach a tweeter's low, to allow a high quality two-way system. Image File history File links No higher resolution available. ... Image File history File links No higher resolution available. ... Exploded view of an aircraft. ... A rule of thumb is an easily learned and easily applied procedure for approximately calculating or recalling some value, or for making some determination. ...


Full range drivers

A full-range driver is designed to have the widest frequency response possible. These drivers are small, typically 2 to 6 inches (5 to 16 cm) in diameter to permit reasonable high frequency response, and carefully designed to give low distortion output at low frequencies, though none have sufficient output at low frequencies for many purposes (eg, due to small maximum cone excursion) and limited power handling capacity (eg, due to a small voice coil). Those favoring this approach claim a coherence of sound (said to be due to the single source and resulting lack of phase interference, and likely to the lack of electrical crossover components). Disadvantages include a requirement for elaborate cabinets (i.e., transmission lines, horns, etc) to increase efficiency at low frequencies by better matching the driver to the air at those frequencies, thus increasing the output level at low frequencies. Cross-section of a full-range loudspeaker. ... A transmission line is the material medium or structure that forms all or part of a path from one place to another for directing the transmission of energy, such as electromagnetic waves or acoustic waves, as well as electric power transmission. ... Horn loudspeaker with a sealed box driver mounting A horn speaker is a loudspeaker which uses a horn to increase the overall efficiency of the driving element, typically a diaphragm driven by an electromagnet. ...


Full range drivers often employ an additional cone called a whizzer: a small, light cone attached to the joint between the voice coil and the primary cone. The whizzer cone extends the high frequency response and broadens the high frequency directivity, which would otherwise be greatly reduced due to cone material breakup at higher frequencies (the cone area away from the coil fails to follow the area near the coil at higher frequencies in larger cones). The main cone is built so as to flex more in this region at high frequencies than the rest of the cone. The result is that the main cone delivers low frequencies and the whizzer cone contributes most of the higher frequencies. Since the whizzer cone is smaller than the main diaphragm, output dispersion at high frequencies is improved relative to a single larger diaphragm with no whizzer. Full range drivers are one approach to avoiding the possible effects of multiple driver systems, caused by non-coincident driver location and crossover issues.


Subwoofer

Main article: Subwoofer

A subwoofer is a woofer driver used only for the lowest part of the audio spectrum: typically below 120 Hz. Because the intended range of frequencies is limited, subwoofer design is usually simpler than for conventional loudspeakers, often consisting of a single subwoofer driver enclosed in a suitable cabinet. To accurately reproduce very low bass notes without unwanted resonances (from cabinet panels, for instance), subwoofer systems must be solidly constructed and properly braced; good ones are typically heavy. Many subwoofers are designed to include power amplifiers and electronic filters, with additional controls relevant to low frequency reproduction. These variants are known as "active subwoofers". Passive subwoofers require external amplification. a 12 subwoofer driver A subwoofer refers to either a woofer, or a complete loudspeaker dedicated to the reproduction of bass audio frequencies, typically from 150 Hz down to 20 Hz. ... a 12 subwoofer driver A subwoofer refers to either a woofer, or a complete loudspeaker dedicated to the reproduction of bass audio frequencies, typically from 150 Hz down to 20 Hz. ...


Loudspeaker system design

Crossover

Main article: Audio crossover
A passive crossover
A passive crossover
An active crossover
An active crossover

Used in multi-driver speaker systems, the crossover is a device that separates the input signal into different frequency ranges suited to each driver. Each driver, therefore, receives the frequency range it was designed for, so the distortion in each driver, and interference between the drivers, is reduced. The ideal crossover would have no overlap between the signals sent to the different drivers, but this is not achievable in practice with post amplifier analog filters. Audio crossovers are a class of electronic filters designed specifically for use in audio applications, especially hi-fi. ... Image File history File links Passive_Crossover. ... Image File history File links Passive_Crossover. ... Image File history File links Active_Crossover. ... Image File history File links Active_Crossover. ...


Crossovers can be passive or active. A passive crossover is an electronic circuit using a combination of one or more non-polar capacitors, resistors, and inductors. These parts are connected after the amplifier and divide the signal into individual frequency bands before it is delivered to the speaker drivers. Passive crossover circuits need no external power. An active crossover is an electronic filter circuit which divides the complete signal into individual frequency bands before amplification, thus requiring one amplifier for each bandpass. Audio crossovers are a class of electronic filters designed specifically for use in audio applications, especially hi-fi. ... See Capacitor (component) for a discussion of specific types. ... Resistor symbols (American) Resistor symbols (Europe, IEC) Axial-lead resistors on tape. ... Audio crossovers are a class of electronic filters designed specifically for use in audio applications, especially hi-fi. ...


Passive crossovers are generally installed inside speaker boxes and are by far the most common type of crossover for home and low power use. In car audio systems, passive crossovers are often in a separate box due to the size of some of the passive components used. Passive crossovers convert a non-trivial part of the amplifier power they handle into heat, so when high power output is needed, active crossovers are often used. Active crossovers allow more precise alignment of phase and time between frequency bands; equivalently tight adjustment using only passive components is a difficult engineering problem in part because of wide component part tolerances. Audio crossovers are a class of electronic filters designed specifically for use in hi-fi audio applications. ...


Many new loudspeaker designs have begun incorporating active crossover circuitry and onboard amplification. Such designs typically require AC power and take low level signal inputs instead of high level amplifier output connections. Ideally, this approach offers the advantages of close alignment of phase between frequency bands, active protection circuits to protect drivers, and virtually no loss of amplifier power in long cable runs or passive crossover components. Self-powered loudspeakers are being used in many applications such as small-scale computer sound (for one listener) and large-scale concert sound systems (for large halls full of listeners). Self-powered concert loudspeakers provide the additional benefit of improved predictability in sound quality; the touring concert sound engineer need not worry about customized crossover settings in each venue changing the characteristics of a loudspeaker.


Enclosures

Main article: Loudspeaker enclosure
An unusual 3-way speaker system. The cabinet is narrow to reduce a diffraction effect called the 'baffle step'.
An unusual 3-way speaker system. The cabinet is narrow to reduce a diffraction effect called the 'baffle step'.

Most loudspeaker systems consist of drivers mounted in an enclosure, or cabinet. The role of the enclosure is to provide a place to mount the drivers and to prevent sound waves from the back of a driver from interfering destructively with those from the front -- doing so typically causes cancellations (eg, comb filtering) and significantly alters the level and quality sound at low frequencies. A loudspeaker enclosure is a cabinet designed to transmit sound to the listener via mounted loudspeaker drive units. ... Image File history File links Download high-resolution version (810x1851, 503 KB) Other versions File links The following pages on the English Wikipedia link to this file (pages on other projects are not listed): Loudspeaker ... Image File history File links Download high-resolution version (810x1851, 503 KB) Other versions File links The following pages on the English Wikipedia link to this file (pages on other projects are not listed): Loudspeaker ... A loudspeaker enclosure is a cabinet designed to transmit sound to the listener via mounted loudspeaker drive units. ...


The simplest driver mount is a flat panel (ie, baffle) with the drivers mounted to it. However, in this design, frequencies with a wavelength longer than the baffle dimensions are canceled out because the antiphase radiation from the rear of the cone interferes with the radiation from the front. With an infinitely large panel interference could be entirely prevented. A sufficiently large sealed box can approach this behavior.[3][4].


Since panels of infinite dimensions are impractical, most enclosures function by containing the rear radiation from the cone. A sealed enclosure prevents transmission of the sound emitted from the rear of the loudspeaker by confining the sound in a rigid and airtight box. Techniques used to reduce transmission of sound through the walls of the cabinet include thicker cabinet walls, lossy wall material, internal bracing, curved cabinet walls or more rarely visco-elastic materials (eg, mineral loaded bitumen), or thin lead sheeting applied to interior enclosure walls. A viscoelastic material is one in which: hysteresis is seen in the stress-strain curve. ... Ewer from Iran, dated 1180-1210CE. Composed of brass worked in repoussé and inlaid with silver and bitumen. ... General Name, Symbol, Number lead, Pb, 82 Chemical series Post-transition metals or poor metals Group, Period, Block 14, 6, p Appearance bluish gray Standard atomic weight 207. ...


However, a rigid enclosure internally reflects sound which can then be transmitted through the loudspeaker cone, again resulting in degradation of sound quality. This can be reduced by internal absorption using absorptive materials (often called "damping") such as fiberglass, wool, or synthetic fiber batting within the enclosure. The internal shape of the enclosure can also be designed to reduce this by reflecting sounds away from the loudspeaker diaphragm where they may then be absorbed.


Other enclosure types alter the rear radiation so it can add constructively to the output from the front of the cone. Designs that do this (including bass reflex, passive radiators, transmission line, etc) are often used to extend the effective low frequency response, and increased low frequency output, of the driver.


To make the transition between drivers as seamless as possible, system designers have attempted to time-align (or phase adjust) the drivers by moving one or more drivers forward or back, so that the acoustic center of each driver is in the same vertical plane. This may also involve tilting the face speaker back, or providing separate enclosure mounting for each driver, or, less commonly, using electronic techniques to achieve the same effect. These attempts account for some unusual cabinet designs.


Speaker cabinets cause diffraction, causing peaks and dips in the frequency response. This is usually a problem at higher frequencies where wavelengths are similar to, or smaller than, cabinet dimensions. The effect can be minimized by rounding the front edges of the cabinet, rounding the cabinet itself, using a smaller or narrower enclosure, choosing a strategic driver arrangement, or using absorptive material around a driver. The intensity pattern formed on a screen by diffraction from a square aperture Diffraction refers to various phenomena associated with wave propagation, such as the bending, spreading and interference of waves passing by an object or aperture that disrupts the wave. ...


Wiring connections

Five-way binding posts on a loudspeaker connected using banana plugs.
Five-way binding posts on a loudspeaker connected using banana plugs.
A 4 Ohm loudspeaker with two pairs of binding posts capable of accepting bi-wiring after the removal of two metal straps
A 4 Ohm loudspeaker with two pairs of binding posts capable of accepting bi-wiring after the removal of two metal straps

Most loudspeakers use two wiring points to connect to the source of the signal (for example, to the audio amplifier or receiver). This is usually done using binding posts, or spring clips on the back of the enclosure. If the wires for left and right speakers (in a stereo setup) are not connected 'in phase' with each other (the + and - connections on the speaker and amplifier should be connected + to + and - to -) the loudspeakers will be out of polarity. Given identical signals, motion in one cone will be in the opposite direction of the other. This will typically cause monophonic material within a stereo recording to be canceled out, reduced in level and made more difficult to localize, all due to destructive interference of the sound waves. The cancellation effect is most noticeable at frequencies where the speakers are separated by a quarter wavelength or less; low frequencies are affected the most. This type of wiring error doesn't damage speakers but isn't optimal. Image File history File linksMetadata Banana_plugs_speaker. ... Image File history File linksMetadata Banana_plugs_speaker. ... Two insulated, color-coded binding posts at the bottom center of a signal generator Uninsulated binding posts on a loudspeaker connected to stackable banana plugs A binding post is a connector commonly used on electronic test equipment to terminate (attach) a single wire or test lead. ... Stackable 4 mm banana plugs connected to a loudspeaker A banana connector (commonly banana plug for the male, banana jack for the female) is a single-wire (one conductor) electrical connector, widely used in science laboratories for temporarily joining wires to equipment. ... Image File history File links No higher resolution available. ... Image File history File links No higher resolution available. ... In radio terminology, a receiver is an electronic circuit that receives a radio signal from an antenna and decodes the signal for use as sound, pictures, navigational-position information, etc. ... Two insulated, color-coded binding posts at the bottom center of a signal generator Uninsulated binding posts on a loudspeaker connected to stackable banana plugs A binding post is a connector commonly used on electronic test equipment to terminate (attach) a single wire or test lead. ... For other uses, see Interference (disambiguation). ...


Specifications

Specifications label on a loudspeaker
Specifications label on a loudspeaker

Speaker specifications generally include: Image File history File linksMetadata Eltax_Silverstone_200_loudspeaker_label. ... Image File history File linksMetadata Eltax_Silverstone_200_loudspeaker_label. ...

  • Speaker or driver type (individual units only) – Full-range, woofer, tweeter or mid-range.
  • Size of individual drivers. For cone drivers, this number may be the outside diameter of the frame, the diameter of the surround, or the diameter of the cone. It may also be the distance from the center of one mounting hole to its opposite. Voice coil diameter may also be specified. If the loudspeaker has a compression horn driver, the diameter of the horn throat may be given.
  • Rated Power – Nominal (or even continuous) power, and peak (or maximum short-term) power a loudspeaker can handle (i.e., maximum input power before thermally destroying the loudspeaker. It is never the sound output the loudspeaker produces). A driver may be damaged at much less than its rated power if driven past its mechanical limits at lower frequencies (eg, by bass heavy electronica or theatre organ music). Tweeters can also be damaged by amplifier clipping (lots of high frequency energy in such cases) or by music, or sine wave input at high frequencies. Each of these situations pass more energy to a tweeter than it can survive without damage.
  • Impedance – typically 4 Ω (ohms), 8 Ω, etc.
  • Baffle or enclosure type (enclosed systems only) – Sealed, bass reflex, etc.
  • Number of drivers (complete speaker systems only) – 2-way, 3-way, etc.

and optionally: Cross-section of a full-range loudspeaker. ... A midrange speaker A loudspeaker driver that produces the frequency range from approximately 300–5000 hertz is known as a mid-range. ... Transmission lines in Lund, Sweden Electric power, often known as power or electricity, involves the production and delivery of electrical energy in sufficient quantities to operate domestic appliances, office equipment, industrial machinery and provide sufficient energy for both domestic and commercial lighting, heating, cooking and industrial processes. ... Electrical impedance, or simply impedance, is a measure of opposition to a sinusoidal alternating electric current. ...

  • Crossover frequency(ies) (multi-driver systems only) – The nominal frequency boundaries of the signal division between drivers.
  • Frequency response – The measured, or specified, output over a specified range of frequencies for a constant input level varied across those frequencies. It often includes a variance limit such as within "+/- 2.5 dB".
  • Thiele/Small parameters (individual drivers only) – these include the driver's Fs (resonance frequency), Qts (a driver's Q (more or less, its damping factor) at resonant frequency), Vas (the equivalent air compliance volume of the driver), etc.
  • Sensitivity – The sound pressure level produced by a loudspeaker in a non-reverberant environment, usually specified in dB, and measured at 1 meter with an input of 1 watt or 2.83 volts, typically at one or more specified frequencies. This rating is often inflated by manufacturers.
  • Maximum SPL – The highest output the loudspeaker can manage, short of damage or not exceeding a particular distortion level. This rating is often inflated by manufacturers and is commonly given without reference to frequency range or distortion level.

Frequency response is the measure of any systems response to frequency, but is usually used in connection with electronic amplifiers and similar systems, particularly in relation to audio signals. ... Thiele/Small commonly refers to a set of standard parameters that define how a loudspeaker driver performs. ...

Electrical characteristics of a dynamic loudspeaker

The load a driver presents to an amplifier consists of a complex electrical impedance -- a combination of resistance, and both capacitive and inductive reactance, which combines properties of the driver, its mechanical motion, effects of crossover components (if any are in the signal path between amplifier and driver), and effects of air loading on the driver as modified by the enclosure and its environment. Most amplifiers output specifications are given at a specific power into an ideal resistive load. However, a loudspeaker does not really have a constant resistance across its frequency range. Instead, the voice coil is inductive, the driver has mechanical resonances, the enclosure changes the driver's electrical and mechanical characteristics, and a passive crossover between the drivers and the amplifier contributes its own variations. The result is a load resistance which varies fairly widely with frequency, and usually a varying phase relationship between voltage and current as well, also changing with frequency. Impedance curve of a 4 ohm, 120mm speaker A dynamic loudspeaker drivers chief electrical characteristics can be shown as a curve, representing the drivers electrical impedance versus frequency. ... Electrical impedance, or simply impedance, is a measure of opposition to a sinusoidal alternating electric current. ...


Electromechanical measurements

Fully characterizing the sound output quality of a loudspeaker driver or system in words is essentially impossible. Objective measurements provide information about several aspects of performance, so informed comparisons and improvements can be made. Examples of typical measurements are: amplitude and phase characteristics vs. frequency; impulse response under one or more conditions (eg, square waves, sine wave bursts, ...); directivity vs. frequency (eg, horizontally, vertically, spherically, ...); harmonic and intermodulation distortion vs. SPL output using any of several test signals; stored energy (ie, 'ringing') at various frequencies; impedance vs. frequency and small signal vs. large signal performance. Most of these measurements require relatively expensive equipment to perform and good judgement, but the raw sound pressure level output is rather easier to report and so is often the only specified value, sometimes in misleadingly exact terms. The sound pressure level (SPL) a loudspeaker produces is measured in decibels (dBspl). Loudspeaker measurement is one of the most difficult aspects of audio quality measurement, and also probably the most relevant, since loudspeakers have long been generally acknowledged to be the weak link in the audio chain. ... The total harmonic distortion, or THD, of a signal is a measurement of the harmonic distortion present and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental. ... Intermodulation distortion: Nonlinear distortion characterized by the appearance, in the output of a device, of frequencies that are linear combinations of the fundamental frequencies and all harmonics present in the input signals. ... For other uses, see Decibel (disambiguation). ... db(spl) = decibel sound PRESSURE level. ...


Efficiency vs. sensitivity

Loudspeaker efficiency is defined as the sound power output divided by the electrical power input. Most loudspeakers are actually very inefficient transducers; about 1% of the electrical energy sent by an amplifier to a typical home loudspeaker is converted to the acoustic energy we can hear. The remainder is converted to heat, mostly in the voice coil and magnet assembly. The main reason for this is the difficulty of achieving proper impedance matching between the acoustic impedance of the drive unit and that of the air into which it is radiating. The efficiency of loudspeaker drivers varies with frequency as well. For instance, the output of a woofer driver decreases as the input frequency decreases. Impedance matching is the practice of attempting to make the output impedance of a source equal to the input impedance of the load to which it is ultimately connected, usually in order to maximize the power transfer and minimize reflections from the load. ... The acoustic impedance Z (or sound impedance) is a frequency f dependent parameter and is very useful, for example, for describing the behaviour of musical wind instruments. ...


Driver ratings based on the SPL for a given input are called sensitivity ratings and are notionally similar to efficiency. Sensitivity is usually defined as so many decibels at 1 W electrical input, measured at 1 meter, often at a single frequency. The voltage used is often 2.83 VRMS, which is 1 watt into an 8 Ω (nominal) speaker impedance (approximately true for many speaker systems). Measurements taken with this reference are quoted as dB with 2.83 V @ 1 m.


The sound pressure output is measured at (or mathematically scaled to be equivalent to a measurement taken at) one meter from the loudspeaker and on-axis or directly in front of it under the condition that the loudspeaker is radiating into an infinitely large space and mounted on an infinite baffle. Clearly then, sensitivity does not correlate precisely with efficiency, as it also depends on the directivity of the driver being tested and the acoustic environment in front of the actual loudspeaker. For example, a cheerleader's horn produces more sound output in the direction it is pointed, by concentrating sound waves from the cheerleader in one direction, and thus "focusing" them. The horn also improves the impedance matching between voice and the air, which produces more acoustic power for a given speaker power. In some cases, impedance matching (via careful enclosure design) will allow the speaker to produce more power. A loudspeaker enclosure is a cabinet designed to transmit sound to the listener via mounted loudspeaker drive units. ...

  • Typical home loudspeakers have sensitivities of about 85 to 95 dB for 1 W @ 1 m - an efficiency of 0.5-4%.
  • Sound reinforcement and public address loudspeakers have sensitivities of perhaps 95 to 102 dB for 1 W @ 1 m - an efficiency of 4-10%.
  • Rock concert, stadium PA, marine hailing, etc speakers generally have higher sensitivities of 103 to 110 dB for 1 W @ 1 m - an efficiency of 10-20%.

A driver with a higher maximum power rating cannot necessarily be driven to louder levels than a lower rated one, since sensitivity and power handling are largely independent properties. In the examples that follow, assume for simplicity that the drivers being compared have the same electrical impedance, are operated at the same frequency which is within both driver's respective pass bands, and that power compression and distortion are low. For the first example, a speaker 3 dB more sensitive than another will produce double the sound pressure level (or be 3 dB louder) for the same power input. Thus a 100 W driver ("A") rated at 92 dB for 1 W @ 1 m sensitivity will output twice as much acoustic power as a 200 W driver ("B") rated at 89 dB for 1 W @ 1 m when both are driven with 100 W of input power. For this particular example, when driven at 100 W, speaker A will produce the same SPL, or loudness, speaker B would produce with 200 W input. Thus a 3 dB increase in sensitivity of the speaker means that it will need half the amplifier power to achieve a given SPL. This translates into a smaller, less complex power amplifier and often to reduced overall cost.


It is not possible to combine high efficiency, especially at low frequencies, with compact enclosure size, and adequate low frequency response. One can, more or less, only choose two of the three parameters when designing a speaker system. So, for example, if extended low frequency performance and a small box size are important, one must accept low efficiency.[5] This rule of thumb is sometimes called Hoffman's Iron Law (after J. A. Hoffman, the H in KLH).[6] A rule of thumb is an easily learned and easily applied procedure for approximately calculating or recalling some value, or for making some determination. ... KLH is an audio company founded in 1957 by Henry Kloss, Malcolm Lowe, and J. Anton Hoffman. ...


Listening environment

The interaction of a loudspeaker system with its environment is complex and is largely out of the loudspeaker designer's control. Most listening rooms present a more or less reflective environment, depending on size, shape, volume, and furnishings. This means the sound reaching a listener's ears consists not only of sound directly from the speaker system, but also the same sound delayed by traveling to and from (and being modified by) one or more surfaces. These reflected sound waves, when added to the direct sound, cause cancellation and addition at assorted frequencies (eg, from resonant room modes), thus changing the timbre and character of the sound at the listener's ears. Our brains are very sensitive to small variations, including some of these, and this is part of the reason why a loudspeaker system sounds different at different listening positions or in different rooms. Resonant room modes affect the low frequency response of a sound system at the listening position. ...


A significant factor in the sound of a loudspeaker system is the amount of absorption and diffusion present in the environment. Clapping one's hands in a typical empty room, without draperies or carpet, will produce a zippy, fluttery echo which is due both to a lack of absorption and to reverberation (that is, repeated echoes) from flat reflective walls, floor, and ceiling. The addition of hard surfaced furniture, wall hangings, shelving and even baroque plaster ceiling decoration, will change the echoes, due primarily to the diffusion caused by somewhat reflective objects with shapes and surfaces having sizes on the order of the sound wavelengths being diffused. This somewhat breaks up the simple reflections otherwise caused by bare flat surfaces, and spreads the reflected energy of an incident wave over a larger angle on reflection.


Placement

In a typical rectangular listening room, this resonant phenomenon happens differently in each of the three dimensions, and there are even more complex interactions involving four or even all six boundary surfaces. It is primarily an issue for low frequencies which are not much affected by such things as furniture or its placement. In addition, the location of the loudspeakers, and the listener, with respect to room boundaries affect how strongly the resonances are excited. Many people are familiar with certain locations in some rooms, clubs, or buildings which have much more, or less, bass - most usually near room walls or corners. This is because standing wave patterns are most easily heard in these locations and at lower frequencies, below the Schroeder frequency - typically around 200-300 Hz, depending on room size.


Directivity

Acousticians, in studying the radiation of sound sources have developed some concepts important to understanding how loudspeakers are perceived. The simplest possible radiating source is a point source, sometimes called a simple source. An ideal point source is an infinitesimally small point radiating sound. It may be easier to imagine a tiny pulsating sphere, uniformly increasing and decreasing in diameter, sending out sound waves in all directions equally, independent of frequency.


Any object radiating sound, including a loudspeaker system, can be thought of as being composed of combinations of such simple point sources. The radiation pattern of a combination of point sources will not be the same as for a single source, but rather will depend on the distance and orientation between the sources, the position relative to them from which the listener hears the combination, and the frequency of the sound involved. Using geometry and calculus, some simple combinations of sources are easily solved; others are not.


One simple combination is two simple sources separated by a distance and vibrating out of phase, one miniature sphere expanding while the other is contracting. The pair is known as a doublet, or dipole, and the radiation of this combination is similar to that of a very small dynamic loudspeaker operating without a baffle. The directivity of a dipole is a figure 8 shape with maximum output along a vector which connects the two sources and minimums to the sides when the observing point is equidistant from the two sources, where the sum of the positive and negative waves cancel each other. While most drivers are dipoles, depending on the enclosure to which they are attached, they may radiate as monopoles, dipoles (or bipoles). If mounted on a finite baffle, and these out of phase waves allowed to interact, dipole peaks and nulls in the frequency response result. When the rear radiation is absorbed or trapped in a box, the diaphragm becomes a monopole radiator. Bipolar speakers, made by mounting in-phase monopoles (both moving out of or into the box in unison) on opposite sides of a box, are a method of approaching omnidirectional radiation patterns.

Polar plots of a four-driver industrial columnar public address loudspeaker taken at six frequencies. Note how the pattern is nearly omnidirectional at low frequencies, converging to a wide fan-shaped pattern at 1 kHz, then separating into lobes and getting weaker at higher frequencies[7]

In real life, individual drivers are actually complex 3D shapes such as cones and domes, and they are placed on a baffle for various reasons. A mathematical expression for the directivity of a complex shape, based on modeling combinations of point sources, is usually not possible, but in the farfield, the directivity of a loudspeaker with a circular diaphragm will be close to that of a flat circular piston, so it can be used as an illustrative simplification for discussion. As a simple example of the mathematical physics involved, consider the following: the formula for farfield directivity of a flat circular piston in an infinite baffle is p(theta) = frac{p_0 J_1(k_a sin theta)}{k_a sin theta} where k_a=frac{2pi a}{lambda}, p0 is the pressure on axis, a is the piston radius, λ is the wavelength (i.e. lambda = frac{c}{f} = frac{text{speed of sound}}{text{frequency}}) θ is the angle off axis and J1 is the Bessel function of the first kind. School public address system A public address or PA system is an electronic amplification system with a mixer, amplifier and loudspeakers, used to reinforce a given sound (e. ... In mathematics, Bessel functions, first defined by the mathematician Daniel Bernoulli and generalized by Friedrich Bessel, are canonical solutions y(x) of Bessels differential equation: x2 for an arbitrary real or complex number α. The most common and important special case is where α is an integer n, then α is referred...


A planar source will radiate sound uniformly for low frequencies whose wavelength is shorter than the dimensions of the planar source, and as frequency increases, the sound from such a source will be focused into an increasingly narrower angle. The smaller the driver, the higher the frequency where this narrowing of directivity occurs. Even if the diaphragm is not perfectly circular, this effect occurs such that larger sources are more directive. Several loudspeaker designs have been built which have approximately this behavior. Most are electrostatic or planar magnetic designs.


Various manufacturers use different driver mounting arrangements to create a specific type of sound field in the space for which they are designed. The resulting radiation patterns may be intended to more closely simulate the way sound is produced by real instruments, or simply create a controlled energy distribution from the input signal (some using this approach are called monitors, as they are useful in checking the signal just recorded in a studio). An example of the first is a room corner system with many small drivers on the surface of a 1/8 sphere. A system design of this type was patented by, and actually produced commercially, by Professor Amar Bose -- the 1801. Later Bose models have deliberately emphasized production of both direct and reflected sound by the loudspeaker itself, regardless of its environment. The designs are controversial in high fidelity circles, but have proven commercially successful. Several other manufacturers' designs follow similar principles. Studio monitors, also called reference monitors are loudspeakers specifically designed for audio production applications such as recording, film, television and radio studios. ...


Directivity is an important issue because it affects the frequency balance of sound a listener hears, and also the interaction of the speaker system with the room and its contents. A speaker which is very directive (ie, on an axis perpendicular to the speaker face) may result in a reverberant field lacking in high frequencies, giving the impression the speaker is deficient in treble even though it measures well on axis (eg, "flat" across the entire frequency range). Speakers with very wide, or rapidly increasing directivity at high frequencies, can give the impression that there is too much treble (if the listener is on axis) or too little (if the listener is off axis). This is part of the reason why on-axis frequency response measurement is not a complete characterization of the sound of a given loudspeaker.


Other driver designs

Other types of drivers which depart from the most commonly used direct radiating electro-dynamic driver mounted in an enclosure include:


Horn loudspeakers

A three-way loudspeaker that uses horns in front of each of the three drivers: a wide, shallow horn for the tweeter, a long, straight horn for mid frequencies and a folded horn for the woofer
A three-way loudspeaker that uses horns in front of each of the three drivers: a wide, shallow horn for the tweeter, a long, straight horn for mid frequencies and a folded horn for the woofer
Main article: Horn speaker

Horn speakers are the oldest form of loudspeaker system, having been used from very early on for cylinder recording players. They use a shaped waveguide in front of or behind the driver to increase the directivity of the loudspeaker and to transform a small diameter, high pressure condition at the driver cone surface to a large diameter, low pressure condition at the mouth of the horn. This increases the sensitivity of the loudspeaker and focuses the sound over a narrower area. The size of the throat, mouth, the length of the horn, as well as the area expansion rate along it must be carefully chosen to match the drive to properly provide this transforming function over a range of frequencies (every horn performs poorly outside its acoustic limits, at both high and low frequencies). The length and cross-sectional mouth area required to create a bass or sub-bass horn require a horn many feet long. 'Folded' horns can reduce the total size, but compel designers to make compromises and accept increased complication such as cost and construction. Some horn designs not only fold the low frequency horn, but use the walls in a room corner as an extension of the horn mouth. In the late 1940s, horns whose mouths took up much of a room wall were not unknown amongst hi-fi fans. Room sized installations became much less acceptable when two or more were required. Horn loudspeaker with a sealed box driver mounting A horn speaker is a loudspeaker which uses a horn to increase the overall efficiency of the driving element, typically a diaphragm driven by an electromagnet. ... Horn loudspeaker with a sealed box driver mounting A horn speaker is a loudspeaker which uses a horn to increase the overall efficiency of the driving element, typically a diaphragm driven by an electromagnet. ...


A horn loaded speaker can have a sensitivity as high as 110 dB @ 2.83 volts (1 watt @ 8 ohms) @ 1 meter. This is a hundredfold increase in output compared to a speaker rated at 90 dB sensitivity, and is invaluable in applications where high sound levels are required or amplifier power is limited.


Piezoelectric speakers

Piezoelectric speakers are frequently used as beepers in watches and other electronic devices, and are sometimes used as tweeters in less-expensive speaker systems, such as computer speakers and portable radios. Piezoelectric speakers have several advantages over conventional loudspeakers: they are resistant to overloads which would normally destroy most high frequency drivers, and they can be used without a crossover due to their electrical properties. There are also disadvantages: some amplifiers can oscillate when driving capacitive loads like most piezoelectrics, which results in distortion or damage to the amplifier. Additionally, their frequency response, in most cases, is inferior to that of other technologies. This is why they are generally used in single frequency (beeper) or non-critical applications. For other uses, see Watch (disambiguation). ...


Piezoelectric speakers can have extended high frequency output, and this is useful in some specialized circumstances; for instance, sonar applications in which piezoelectric variants are used as both output devices (generating underwater sound) and as input devices (acting as the sensing components of underwater microphones). They have advantages in these applications, not the least of which is simple and solid state construction which resists the effects of seawater better than, say, a ribbon based device would. This article is about underwater sound propagation. ...


Electrostatic loudspeakers

Electrostatic loudspeakers use a high voltage electric field (rather than a magnetic field) to drive a thin membrane between two perforated conductive plates called stators. Because they are driven over the entire membrane surface rather than from a small voice coil, they can provide a more linear and lower distortion response than dynamic drivers. They have the disadvantage that the diaphragm excursion is severely limited because of practical construction limitations. The further apart the stators are positioned, the higher the voltage must be to achieve acceptable efficiency, which increases the tendency for attracting dust and producing electrical arcs. For many years electrostatic loudspeakers had a reputation as a generally unreliable and occasionally dangerous product. Arcing remains a potential problem with current technologies, especially when the panels are allowed to get collect dust or dirt, or when driven with high signal levels. Schematic showing an electrostatic speakers construction and its connections. ... Schematic showing an electrostatic speakers construction and its connections. ...


Electrostatics are inherently dipole radiators and due to the thin flexible membrane cannot be used in enclosures to reduce low frequency cancellation as with common cone drivers. Due to this and the low excursion capability, full range electrostatic loudspeakers are large by nature, and even so are not outstanding performers at the lowest frequencies. To reduce the size of commercial products, they are often used as a high frequency driver in combination with a conventional dynamic driver which handles the bass frequencies.


Ribbon and planar magnetic loudspeakers

A ribbon speaker consists of a thin metal-film ribbon suspended in a magnetic field. The electrical signal is applied to the ribbon which moves with it, thus creating the sound. The advantage of a ribbon driver is that the ribbon has very little mass; thus, it can accelerate very quickly, yielding very good high-frequency response. Ribbon loudspeakers are often very fragile -- some can be torn by a strong gust of air. Most ribbon tweeters emit sound in a dipole pattern; a very few have backings which limit the dipole radiation pattern. Above and below the ends of the more or less rectangular ribbon, there is less audible output due to phase cancellation, but the precise amount of directivity depends on ribbon length. Ribbon designs generally require exceptionally powerful magnets which make them costly to manufacture. Ribbons have a very low resistance that most amplifiers cannot drive directly. As a result, a step down transformer is typically used to increase the current through the ribbon. The amplifier "sees" a load that is the ribbon's resistance times the transformer turns ratio squared. The transformer must be carefully designed so that its frequency response and parasitic losses do not degrade the sound, further increasing cost and complication relative to conventional designs. For other uses, see Mass (disambiguation). ...


Planar magnetic speakers (having printed or embedded conductors on a flat diaphragm) are sometimes described as "ribbons", but are not truly ribbon speakers. The term planar is generally reserved for speakers which have roughly rectangular shaped flat surfaces that radiate in a bipolar (ie, front and back) manner. Planar magnetic speakers consist of a flexible membrane with a voice coil printed or mounted on it. The current flowing through the coil interacts with the magnetic field of carefully placed magnets on either side of the diaphragm, causing the membrane to vibrate more or less uniformly and without much bending or wrinkling. The driving force covers a large percentage of the membrane surface and reduces resonance problems inherent in coil-driven flat diaphragms.


Some planar magnetic designs have small cavities between the magnet structures and the diaphragm. This can cause a "cavity resonance" response peak that requires correction. Failure to correct this cavity resonance is likely the cause the steely or shrill sound sometimes attributed to these designs.[citation needed]


Bending wave loudspeakers

Bending wave transducers use a diaphragm that is intentionally flexible. The rigidity of the material increases from the center to the outside. Short wavelength sound therefore radiates primarily from the inner area, while longer waves reach the edge of the speaker. To prevent reflections, long waves are absorbed by a surrounding damper. Such transducers can cover a wide frequency range (80 Hz to 35,000 Hz) and have been promoted as being close to an ideal point sound source.[8][9]


Flat panel loudspeakers

There have been many attempts to reduce the size of speaker systems, or alternatively to make them less obvious. One such attempt was the development of voice coils mounted to flat panels to act as sound sources. These can then be made in a neutral color and hung on walls where they will be less noticeable than many speakers, or can be deliberately painted with patterns in which case they can function decoratively. There are two related problems with flat panel techniques: first, a flat panel is necessarily more flexible than a cone shape in the same material, and therefore will move as a single unit even less, and second, resonances in the panel are difficult to control, leading to considerable distortions. Some progress has been made using such lightweight, rigid, materials as Styrofoam, and there have been several flat panel systems commercially produced in recent years. Styrofoam is a trademark name for polystyrene thermal insulation material, manufactured by Dow Chemical Company. ...


Distributed mode loudspeakers

A newer implementation of the flat panel speaker system involves an intentionally flexible panel and an "exciter", mounted off-center in a location such that it excites the panel to vibrate, but with minimal resonances. Speakers using such techniques can reproduce sound with a wide directivity pattern (paradoxically somewhat like a point source) and have been used in some computer speaker designs and bookshelf loudspeakers.[10]


Heil air motion transducers

Dr. Oskar Heil invented the air motion transducer in the 1960s. In this approach, a pleated diaphragm is mounted in a magnetic field and forced to close and open under control of a music signal. Air is forced from between the pleats in accordance with the imposed signal, generating sound. The drivers are less fragile than ribbons and considerably more efficient (and able to produce higher absolute output levels) than ribbon, electrostatic, or planar magnetic tweeter designs. Oskar Heil is sometimes mentioned as an inventor of an early transistor-like device. ...


ESS, a California manufacturer, licensed the design, employed Dr. Heil, and produced a range of speaker systems using his tweeters during the 1970s and 1980s. Radio Shack, a large US retail store chain, also sold speaker systems using such tweeters for a time. At present, there are two manufacturers of these drivers, both in Germany, one of which produces a range of high end professional speakers using tweeters and midrange drivers based on the technology. RadioShack Corporation (formerly Radio Shack) (NYSE: RSH) runs a chain of electronics retail stores in the United States, as well as parts of Europe. ...


Plasma arc speakers

Plasma arc loudspeakers use electrical plasma as a radiating element. Since plasma has minimal mass, but is charged and therefore can be manipulated by an electric field, the result is a very linear output at frequencies far higher than the audible range. Problems of maintenance and reliability for this approach tend to make it unsuitable for mass market use. In 1978 Dr. Alan Hill of the Los Alamos National Laboratory designed the Hill Plasmatronics, an $8000 tweeter whose plasma was generated from helium gas.[11] This avoided the ozone and nitrous oxide produced by RF decomposition of air in an earlier generation of plasma tweeters made by the pioneering DuKane Corporation, who produced the Ionovac (marketed as the Ionofane in the UK) during the 1950s. Currently, there remain a few manufacturers in Germany, and a do it yourself design has been published. A plasma arc loudspeaker or plasma-dynamic loudspeaker is a loudspeaker that creates sound by varying air pressure through a corona discharge or electric arc. ... A plasma arc loudspeaker or plasma-dynamic loudspeaker is a loudspeaker that creates sound by varying air pressure through a corona discharge or electric arc. ... For other uses, see Plasma. ... In physics, the space surrounding an electric charge or in the presence of a time-varying magnetic field has a property called an electric field. ... Los Alamos National Laboratory, aerial view from 1995. ... General Name, symbol, number helium, He, 2 Chemical series noble gases Group, period, block 18, 1, s Appearance colorless Standard atomic weight 4. ... For other uses, see Ozone (disambiguation). ... For other uses, see Nitrous oxide (disambiguation). ... It has been suggested that this article or section be merged with Radio waves. ...


A less expensive variation on this theme is the use of a flame for the driver, as flames contain ionized (electrically charged) gases.[12]


Digital speakers

Main article: Digital speakers

Digital speakers have been the subject of experiments by Bell Labs as far back as the 1920s. The design is simple; each bit drives an independent speaker driver. Increasingly significant bits drive speakers of twice the area of the previous (often in a ring around the previous driver). A value of "1" causes that driver to be driven to full amplitude; a value of "0" causes it to be completely shut off. Digital speakers are a form of loudspeaker technology. ... Digital speakers are a form of loudspeaker technology. ... Bell Laboratories (also known as Bell Labs and formerly known as AT&T Bell Laboratories and Bell Telephone Laboratories) was the main research and development arm of the United States Bell System. ... This article is about the unit of information. ... This article or section does not adequately cite its references or sources. ...


There are two problems with this design which have led to it being abandoned as impractical for the present. First, for a reasonable number of bits (required for adequate sound reproduction quality), the size of the system becomes very large. Secondly, due to analog digital conversion, the effect of aliasing is unavoidable, so that the audio output is "reflected" at equal amplitude in the frequency domain, on the other side of the sampling frequency, causing an unacceptably high level of ultrasonics to accompany the desired output. This article or section should include material from AD converters In electronics, an analog-to-digital converter (abbreviated ADC, A/D, or A to D) is a device that converts continuous signals to discrete digital numbers. ... Properly sampled image of brick wall. ... The sampling frequency or sampling rate defines the number of samples per second taken from a continuous signal to make a discrete signal. ... For other uses, see Ultrasound (disambiguation). ...


The term "digital" or "digital-ready" is often used for marketing purposes on speakers or headphones, but these systems are not digital in the sense described above. Rather, this is a somewhat deceptive marketing tactic, in which the manufacturer is trying to capitalize on the popularity of digital sound recordings and equipment.


References

  1. ^ Tesla and the Loudspeaker. Retrieved on 2007-02-21.
  2. ^ Loudspeaker History. Retrieved on 2007-02-21.
  3. ^ Q. What's the difference between ported and un-ported monitors?
  4. ^ Infinite baffle
  5. ^ Loudspeaker Design Tradeoffs
  6. ^ Hoffman's Iron Law
  7. ^ Polar pattern image: Speaker is a Bosch 36 watt LA1-UW36-x columnar model with four identical 4-inch drivers arranged vertically in an enclosure 841 mm (33 inch) high. Polar prediction software is CLF viewer. Loudspeaker information was gathered by the manufacturer into a CF2 file.
  8. ^ Manger loudspeakers
  9. ^ Stereophile magazine. Ohm Walsh 5 loudspeaker (review by Dick Olsher, June 1987)
  10. ^ NXT. Distributed Mode Loudspeaker FAQ
  11. ^ Hill Plasmatronics described. Retrieved March 26, 2007
  12. ^ Re: Could You Please Find Research Re:Sound Reprodution Via Gas Flame & Electri

Year 2007 (MMVII) was a common year starting on Monday of the Gregorian calendar in the 21st century. ... is the 52nd day of the year in the Gregorian calendar. ... Year 2007 (MMVII) was a common year starting on Monday of the Gregorian calendar in the 21st century. ... is the 52nd day of the year in the Gregorian calendar. ... Bosch is the colloquial short name for the German company Robert Bosch GmbH, as well as the last name of: Hieronymus Bosch (1450-1516) - Dutch painter Robert Bosch (1861-1942) - German industrialist Carl Bosch (1874-1940) - German chemist and engineer Juan Bosch (1909-2001) - Dominican politician and writer Orlando Bosch... March 26 is the 85th day of the year (86th in leap years) in the Gregorian calendar. ... Year 2007 (MMVII) was a common year starting on Monday of the Gregorian calendar in the 21st century. ...

See also

Wikimedia Commons has media related to:

An audiophile, from Latin audire[1] to hear and Greek philos[2] loving, can be generally defined as a person dedicated to achieving high fidelity in the recording and playback of music . ... Bandwidth extension of signal is defined as the deliberate process of expanding the frequency range (bandwidth) of a signal in which it contains an appreciable and useful content, and/or the frequency range in which its effects are such. ... The Speaker Icon Computer speakers, or multimedia speakers, are external speakers and are usually equipped with a male-end stereo jack plug (usually color-coded lime green as for the PC 99 standard) for computer sound cards; however, there are some that have female RCA connector, and some people link... In a loudspeaker, a diaphragm is the thin, semi-rigid membrane attached to the central magnet. ... Digital speakers are a form of loudspeaker technology. ... Directional Sound refers to the notion of using various devices to create fields of sound which spread less than most traditional loudspeakers. ... The dust-cap is a circular dished foil found onto the central hole of most loudspeaker diaphragms. ... Surface mount electronic components Electronics is the study of the flow of charge through various materials and devices such as semiconductors, resistors, inductors, capacitors, nano-structures and vacuum tubes. ... Electrostatic speakers use a thin flat diaphragm usually consisting of a plastic sheet impregnated with a conductive material such as graphite sandwiched between two electrically conductive grids, with a small air gap between the diaphragm and grids. ... Ferrofluid on glass, with a magnet underneath. ... Frequency response is the measure of any systems response to frequency, but is usually used in connection with electronic amplifiers and similar systems, particularly in relation to audio signals. ... A guitar speaker is a loudspeaker, usually 12 in diameter, which produces less than full frequency response. ... In-ear headphones Headphones (also known as earphones, stereophones, headsets, or the slang term cans) is a transducer that receives an electrical signal from a media player or receiver and uses speakers placed in close proximity to the ears (hence the name earphone) to convert the signal into audible sound... High-end audio is a term used to describe equipment that is purported by the manufacturers to be the best, regardless of the price. ... Home cinema, also called Home theater, seeks to reproduce cinema quality video and audio in the home. ... Electrical impedance, or simply impedance, is a measure of opposition to a sinusoidal alternating electric current. ... The Isobaric loudspeaker construction technique was originally introduced by Harry Olson in the early 1950s. ... This is a list of loudspeaker manufacturers. ... Loudspeaker Acoustics is the study (either scientific or pseudo-scientific) of the behaviour of the loudspeaker and in particular the effort to create loudspeakers with good sound quality (either subjectively or objectively measured). ... Loudspeaker measurement is one of the most difficult aspects of audio quality measurement, and also probably the most relevant, since loudspeakers have long been generally acknowledged to be the weak link in the audio chain. ... For other uses, see Magnet (disambiguation). ... A midrange speaker A loudspeaker driver that produces the frequency range from approximately 300–5000 hertz is known as a mid-range. ... The earliest loudspeakers for speech and music were moving iron speakers. ... A music centre (or center) is a type of integrated audio system for home use, used to play from a variety of media. ... A TRW-17 Rotary Woofer The model TRW-17 Rotary Woofer, invented by Bruce Thigpen of Eminent Technology, is designed to reproduce, for the first time, audio frequencies from DC (zero) to 20 Hz and is aimed at the home theater and professional audio markets. ... See: Sensitivity (electronics) Sensitivity (human) Sensitivity (tests) For sensitivity in finance, see beta coefficient This is a disambiguation page — a navigational aid which lists other pages that might otherwise share the same title. ... // This page is about modulated ultrasound that can make its carried signal audible without needing a receiver set. ... Sound reproduction is the electrical or mechanical re-creation and/or amplification of sound, often as music. ... A loudspeaker enclosure is a cabinet designed to transmit sound to the listener via mounted loudspeaker drive units. ... Speaker wire and its effect upon the signal it carries is a much debated topic in the audiophile and high fidelity worlds and equally debated is the honesty of its marketing. ... Studio monitors, also called reference monitors are loudspeakers specifically designed for audio production applications such as recording, film, television and radio studios. ... Multichannel audio is the name for a variety of techniques for expanding and enriching the sound of audio playback by recording additional sound channels that can be reproduced on additional speakers. ... Thiele/Small commonly refers to a set of standard parameters that define how a loudspeaker driver performs. ... A shielded Peerless v-line dome tweeter A tweeter is a driver designed to produce high frequencies, typically from around 2,000 hertz to 20,000 hertz (20,000 Hz is generally considered to be the upper limit of the human ear). ... A voice coil is the coil of wire attached to the apex of the moving cone of a loudspeaker. ... A Sony 9 inch woofer Woofer is the term for a loudspeaker driver that is designed to produce low frequency sounds, typically from around 40 hertz up to a few hundred hertz. ...

External links

Look up Loudspeaker in
Wiktionary, the free dictionary.
Wiktionary (a portmanteau of wiki and dictionary) is a multilingual, Web-based project to create a free content dictionary, available in over 151 languages. ...

  Results from FactBites:
 
Loudspeaker Facts - Directivity as a Design Issue (1622 words)
Where the concept fails is a single loudspeaker, or a small cluster of loudspeakers in a facility where you need to have the same frequency response and sound quality in all the seats both near and far.
In a loudspeaker system, the directivity is an indication of how directional the loudspeaker is, or to look at it another way, how effective the speaker is at taking the sound it produces and sending it in one particular direction instead of all directions.
Because the wavelengths of sound have such a wide range of physical size; from 1/2inch (1cm) to 55 feet (18m), it is not possible for a loudspeaker to have the same directivity (or "throw") at all frequencies.
Stereo loudspeaker system for a picture reproducing screen - Patent 4410761 (3821 words)
Each loudspeaker unit is co-ordinated to a delay element, and it is also known in the art to co-ordinate an amplifier or an attenuator to each loudspeaker unit so as to control the loudness of each loudspeaker element individually.
It is advantageous to supply the loudspeaker arrangement of housing 4 with those frequencies which are responsible for the stereo effect, whereas the loudspeaker in the housing 3 is supplied with lower frequencies which are not relevant with respect to the stereo effect.
The loudspeakers of the housings 11,12 as well as the loudspeaker arrangement of the housing 13 may be either supplied with all frequencies of the audio band or with a limited frequency band only.
  More results at FactBites »

 
 

COMMENTARY     


Share your thoughts, questions and commentary here
Your name
Your comments

Want to know more?
Search encyclopedia, statistics and forums:

 


Press Releases |  Feeds | Contact
The Wikipedia article included on this page is licensed under the GFDL.
Images may be subject to relevant owners' copyright.
All other elements are (c) copyright NationMaster.com 2003-5. All Rights Reserved.
Usage implies agreement with terms, 1022, m