This article needs to be **cleaned up** to conform to a higher standard of quality. See How to Edit and Style and How-to for help, or this article's talk page. **Fuzzy set operations** are a set of operations performed on fuzzy sets. These operations are generalization of crisp set operations. There is more than one possible generalization. The most widely used operations are called standard fuzzy set operations. There are three operations, they are fuzzy complements, fuzzy intersections, and fuzzy unions. The word operation can mean any of several things: The method, act, process, or effect of using a device or system. ...
Fuzzy sets are an extension of the classical set theory used in Fuzzy logic. ...
The notion of a set is one of the most important and fundamental concepts in modern mathematics. ...
## Standard fuzzy set operations
- Standard complement
*cA(x) = 1 − A(x)* - Standard intersection
- (
*A* ∩ *B*)(*x*) = min [*A*(*x*), *B*(*x*)] - Standard union
- (
*A* ∪ *B*)(*x*) = max [*A*(*x*), *B*(*x*)] ## Fuzzy complements *A*(*x*) is defined as the degree to which *x* belongs to *A*. Let *cA* denote a fuzzy complement of *A* of type *c*. Then *cA*(*x*) is the degree to which *x* belongs to *cA*, and the degree to which *x* does not belong to *A*. (*A*(*x*) is therefore the degree to which *x* does not belong to *cA*.) Let a complement *cA* be defined by a function *c* : [0,1] → [0,1] *c*(*A*(*x*)) = *cA*(*x*) ### Axioms for fuzzy complements - Axiom c1.
*Boundary condition* *c*(0) = 1 and *c*(1) = 0 - Axiom c2.
*Monotonicity* - For all
*a*, *b* ∈ [0, 1], if *a* ≤ *b*, then *c*(*a*) ≥ *c*(*b*) - Axiom c3.
*Continuity* *c* is continuous function. - Axiom c4.
*Involutions* *c* is an involution, which means that *c*(*c*(*a*)) = *a* for each *a* ∈ [0,1] In mathematics, an involution is a function that is its own inverse, so that f(f(x)) = x for all x in the domain of f. ...
## Fuzzy intersections The intersection of two fuzzy sets *A* and *B* is specified in general by a binary operation on the unit interval, a function of the form *i*:[0,1]×[0,1] → [0,1]. - (
*A* ∩ *B*)(*x*) = *i*[*A*(*x*), *B*(*x*)] for all *x*. ### Axioms for fuzzy intersection - Axiom i1.
*boundary condition* *i*(*a*, 1) = *a* - Axiom i2.
*Monotonicity* *b* ≤ *d* implies *i*(*a*, *b*) ≤ *i*(*a*, *d*) - Axiom i3.
*Commutativity* *i*(*a*, *b*) = *i*(*b*, *a*) - Axiom i4.
*Associativity* *i*(*a*, *i*(*b*, *d*)) = *i*(*i*(*a*, *b*), *d*) - Axiom i5.
*Continuity* *i* is a continuous function - Axiom i6.
*Subidempotency* *i*(*a*, *a*) < *a* ## Fuzzy unions The union of two fuzzy sets *A* and *B* is specified in general by a binary operation on the unit interval function of the form *u*:[0,1]×[0,1] → [0,1]. - (
*A* ∪ *B*)(*x*) = *u*[*A*(*x*), *B*(*x*)] for all *x* ### Axioms for fuzzy union - Axiom u1.
*Boundary condition* *u*(*a*, 0) = *a* - Axiom u2.
*Monotonicity* *b* ≤ *d* implies *u*(*a*, *b*) ≤ *u*(*a*, *d*) - Axiom u3.
*Commutativity* *u*(*a*, *b*) = *u*(*b*, *a*) - Axiom u4.
*Associativity* *u*(*a*, *u*(*b*, *d*)) = *u*(*u*(*a,* b*),* d*)* - Axiom u5.
*Continuity* *u* is a continuous function - Axiom u6.
*Subidempotency* *u*(*a*, *a*) > *a* - Axiom u7.
*strict monotonicity* *a*_{1} < *a*_{2} and *b*_{1} < *b*_{2} implies *u*(*a*_{1}, *b*_{1}) < *u*(*a*_{2}, *b*_{2)} ## Aggregation operations Aggregation operations on fuzzy sets are operations by which several fuzzy sets are combined in a desirable way to produce a single fuzzy set. Aggregation operation on *n* fuzzy set (2 ≤ *n*) is defined by a function *h*:[0,1]^{n} → [0,1] ### Axioms for aggregation operations fuzzy sets - Axiom h1.
*boundary condition* *h*(0, 0, ..., 0) = 0 and *h*(1, 1, ..., 1) = 1 - Axiom h2.
*monotonicity* - For any pair <
*a*_{1}, *a*_{2}, ..., *a*_{n}> and <*b*_{1}, *b*_{2}, ..., *b*_{n}> of *n*-tuples such that *a*_{i}, *b*_{i} ∈ [0,1] for all *i* ∈ *N*_{n}, if *a*_{i} ≤ *b*_{i} for all *i* ∈ *N*_{n}, then *h*(*a*_{1}, *a*_{2}, ...,*a*_{n}) ≤ *h*(*b*_{1}, *b*_{2}, ..., *b*_{n}); that is, *h* is monotonic increasing in all its arguments. - Axiom h3.
*Continuity* *h* is a continuous function. ## See also |