FACTOID # 30: If Alaska were its own country, it would be the 26th largest in total area, slightly larger than Iran.
 
 Home   Encyclopedia   Statistics   States A-Z   Flags   Maps   FAQ   About 
 
WHAT'S NEW
 

SEARCH ALL

FACTS & STATISTICS    Advanced view

Search encyclopedia, statistics and forums:

 

 

(* = Graphable)

 

 


Encyclopedia > Battery (electricity)
Various batteries (clockwise from bottom left): two 9-volt, two AA, triple AAA, one D, a handheld ham radio battery, a cordless phone battery, a camcorder battery, one C and two AAA
Various batteries (clockwise from bottom left): two 9-volt, two AA, triple AAA, one D, a handheld ham radio battery, a cordless phone battery, a camcorder battery, one C and two AAA

In electronics, a battery is two or more electrochemical cells[1] connected in series which store chemical energy and make it available as electrical energy. Common usage has evolved to include a single electrical cell in the definition.[2] There are many types of electrochemical cells, including galvanic cells, electrolytic cells, fuel cells, flow cells and voltaic piles.[3] A battery's characteristics may vary due to many factors including internal chemistry, current drain and temperature. Look up battery in Wiktionary, the free dictionary. ... Various batteries: two 9-volt, two AAA, two AA, and one each of C, D, a cordless phone battery, a camcorder battery, a 2-meter handheld ham radio battery, and a button battery; plus, a US quarter, for scale. ... Various batteries: two 9-volt, two AAA, two AA, and one each of C, D, a cordless phone battery, a camcorder battery, a 2-meter handheld ham radio battery, and a button battery; plus, a US quarter, for scale. ... A demonstration electrochemical cell setup resembling the Daniell cell. ... Electrical circuit components can be connected together in one of two ways: series or parallel. ... The Galvanic cell, named after Luigi Galvani, consists of two different metals connected by a salt bridge or a porous disk between the individual half-cells. ... // Electrolytic cells are composed of a vessel used to do electrolysis, containing electrolyte, usually a solution of water or other solvents capable of dissolving various ions into solution, and a cathode and anode. ... A fuel cell is an electrochemical device similar to a battery, but differing from the latter in that it is designed for continuous replenishment of the reactants consumed; i. ... A Flow Battery is a form of secondary battery in which the electrolytes are not confined to within the power cell its self. ... A copper-zinc Voltaic pile A Voltaic pile on display in the Tempio Voltiano The Voltaic pile is the first modern electric battery, invented by Alessandro Volta in 1800. ... This box:      Electric current is the flow (movement) of electric charge. ...


One common division of batteries distinguishes two types: primary (disposable) and secondary (rechargeable). Primary batteries are designed to be used once only because they use up their chemicals in an effectively irreversible reaction. Secondary batteries can be recharged because the chemical reactions they use are reversible; they are recharged by running a charging current through the battery, but in an opposite direction to the discharge current.[4] Secondary, also called rechargeable batteries can be charged and discharged many times before wearing out. After wearing out some batteries can be recycled.[5] A primary cell is any kind of electrolytic cell in which the electrochemical reaction of interest is not reversible. ... A secondary cell is any kind of electrolytic cell in which the electrochemical reaction that releases energy is reversible. ... A reversible reaction is a chemical reaction that may proceed in both the forward and reverse directions. ... Rechargeable batteries are batteries that can be restored to full charge by the application of electrical energy. ... Battery recycling is an recycling activity that aims to reduce the amount of batteries going into landfills. ...


Although an early form of battery may have been used in antiquity, the modern development of batteries started with the Voltaic pile, invented by the Italian physicist Alessandro Volta in 1800. Since then, batteries have gained popularity as they became portable and useful for many purposes.[6] The widespread use of batteries has created many environmental concerns, such as toxic metal pollution.[7] Many reclamation companies recycle batteries to reduce the number of batteries going into landfills.[8] [1] Drawing of the 3 pieces. ... A copper-zinc Voltaic pile A Voltaic pile on display in the Tempio Voltiano The Voltaic pile is the first modern electric battery, invented by Alessandro Volta in 1800. ... For the concept car, see Toyota Alessandro Volta. ... This article or section does not cite any references or sources. ... Battery recycling is an recycling activity that aims to reduce the amount of batteries going into landfills. ...

Contents

History

The modern story of the battery begins in the 1780s with the discovery of "animal electricity" by Luigi Galvani, which he published in 1791.[9] He created an electric circuit consisting of two different metals, with one touching a frog's leg and the other touching both the leg and the first metal, thus closing the circuit. In modern terms, the frog's leg served as both electrolyte and detector, and the metals served as electrodes. He noticed that even though the frog was dead, its legs would twitch when he touched them with the metals.[10] Luigi Galvani (September 9, 1737 – December 4, 1798) Italian physician and physicist who lived and died in Bologna. ...


Volta realized that the frog's moist tissues could be replaced by cardboard soaked in salt water, and the frog's muscular response could be replaced by another form of electrical detection. He already had studied the electrostatic phenomenon of capacitance, which required measurements of electric charge and of electrical potential. Building on this experience Volta was able to detect electric current flow through his system, now called a voltaic cell, or cell for short. The terminal voltage of a cell that is not discharging is called its electromotive force (emf), and has the same unit as electrical potential, named (voltage) and measured in volts, in honor of Volta. In 1799, Volta invented the battery by placing many voltaic cells in series, literally piling them one above the other. This Voltaic Pile gave a greatly enhanced net emf for the combination,[9] with a voltage of about 50 volts for a 32-cell pile.[10] In many parts of Europe batteries continue to be called piles. The Adome bridge crosses the Volta river south of the Akosombo Dam Volta is a river in central and western Africa that drains into the Gulf of Guinea. ... Capacitance is a measure of the amount of electric charge stored (or separated) for a given electric potential. ... Voltaic cell can connote: Galvanic cell Voltaic pile see also: battery (electricity), fuel cell This is a disambiguation page — a navigational aid which lists other pages that might otherwise share the same title. ... Electromotive force (emf) is the amount of energy gained per unit charge that passes through a device in the opposite direction to the electric field existing across that device. ... International safety symbol Caution, risk of electric shock (ISO 3864), colloquially known as high voltage symbol. ... Josephson junction array chip developed by NIST as a standard volt. ... 1799 was a common year starting on Tuesday (see link for calendar). ... Electrical circuit components can be connected together in one of two ways: series or parallel. ... A copper-zinc Voltaic pile A Voltaic pile on display in the Tempio Voltiano The Voltaic pile is the first modern electric battery, invented by Alessandro Volta in 1800. ...


Unfortunately, Volta did not appreciate that the voltage was due to chemical reactions. He thought that his cells were an inexhaustible source of energy, and that the associated chemical effects (e.g. corrosion) were a mere nuisance, rather than, as Michael Faraday showed around 1830, an unavoidable consequence of their operation. Michael Faraday, FRS (September 22, 1791 – August 25, 1867) was an English chemist and physicist (or natural philosopher, in the terminology of that time) who contributed to the fields of electromagnetism and electrochemistry. ...


While early batteries were of great value for experimental purposes, their limitations made them impractical for a large current drain. Later, starting with the Daniell cell in 1836, batteries provided more reliable currents and were adopted by industry for use in stationary devices, particularly in telegraph networks where they were the only practical source of electricity, since electrical distribution networks did not exist then.[11] These wet cells used liquid electrolytes, which were prone to leakage and spillage if not handled correctly. Many used glass jars to hold their components, which made them fragile. These characteristics made wet cells unsuitable for portable appliances. Near the end of the 19th century, the invention of Dry cell batteries, which replaced liquid electrolyte with a paste, made portable electrical devices practical. Early 20th-century engraving of a gravity cell. ... Year 1836 (MDCCCXXXVI) was a leap year starting on Friday (link will display the full calendar) of the Gregorian Calendar (or a leap year starting on Wednesday of the 12-day slower Julian calendar). ... A dry cell is a galvanic electrochemical cell with a pasty low-moisture electrolyte. ...


The battery has since become a common power source for many household and industrial applications. According to a 2005 estimate, the worldwide battery industry generates US$48 billion in sales annually.[12] Year 2005 (MMV) was a common year starting on Saturday (link displays full calendar) of the Gregorian calendar. ... USD redirects here. ... One thousand million (1,000,000,000) is the natural number following 999,999,999 and preceding 1,000,000,001. ...


How batteries work

Main article: Electrochemical cell
A voltaic cell for demonstration purposes. In this example the two half-cells are linked by a salt bridge separator that permits the transfer of ions, but not water molecules.
A voltaic cell for demonstration purposes. In this example the two half-cells are linked by a salt bridge separator that permits the transfer of ions, but not water molecules.

A battery is a device that converts chemical energy directly to electrical energy.[13] It consists of one or more voltaic cells. Each voltaic cell consists of two half cells connected in series by a conductive electrolyte. One half-cell is the positive electrode and the other is the negative electrode. The electrodes do not touch each other but are electrically connected by the electrolyte, which can be either solid or liquid.[14] In many cells, the materials are enclosed in a container, and a separator, which is porous to the electrolyte, which prevents the electrodes from coming into contact. A demonstration electrochemical cell setup resembling the Daniell cell. ... Image File history File links ElectrochemCell. ... Image File history File links ElectrochemCell. ... A half cell is a structure that contains an electrode and a surrounding electrolyte. ...


Each half cell has an electromotive force (or emf), determined by its ability to drive electric current from the interior to the exterior of the cell. The net emf of the battery is the difference between the emfs of its half-cells, as first recognized by Volta.[15] Thus, if the electrodes have emfs mathcal{E}_1 and mathcal{E}_2, then the net emf is mathcal{E}_{2}-mathcal{E}_{1}. (Hence, two identical electrodes and a common electrolyte give a zero net emf.)


The electrical potential difference, or displaystyle{Delta V_{bat}} across the terminals of a battery is known as terminal voltage and is measured in volts.[16] The terminal voltage of a battery that is neither charging nor discharging is called the open-circuit voltage and equals the emf of the battery. Because of internal resistance[17], the terminal voltage of a battery that is discharging is smaller in magnitude than the open-circuit voltage and the terminal voltage of a battery that is charging exceeds the open-circuit voltage.[18] An ideal battery has negligible internal resistance, so it would always have a terminal voltage of mathcal{E}. This means that to produce a potential difference of 1.5 V, chemical reactions inside would perform 1.5 J of work for a charge of 1 C.[16] Josephson junction array chip developed by NIST as a standard volt. ... Open-circuit voltage or OCV is the difference of electrical potential between two terminals of a device when there is no external load connected, i. ... The joule (IPA: or ) (symbol: J) is the SI unit of energy. ... The coulomb (symbol: C) is the SI unit of electric charge. ...


The voltage developed across a cell's terminals depends on the chemicals used in it and their respective concentrations. For example, alkaline and carbon-zinc cells both measure approximately 1.5 volts, due to the energy release of the associated chemical reactions.[19] Because of the high electrochemical potential changes in the reactions of lithium compounds, lithium cells can provide as much as 3 volts or more.[20] This article is about the chemical element. ...


Classification of batteries

Disposable and rechargeable

From top to bottom: Two button cells, a 9-volt PP3 battery, an AAA battery, an AA battery, a C battery, a D battery, a large 3R12.
From top to bottom: Two button cells, a 9-volt PP3 battery, an AAA battery, an AA battery, a C battery, a D battery, a large 3R12.

Batteries are usually divided into two broad classes: Image File history File links Download high-resolution version (204x601, 22 KB) Batteries (Electricity) Source: http://de. ... Image File history File links Download high-resolution version (204x601, 22 KB) Batteries (Electricity) Source: http://de. ... Type CR2032 watch battery (lithium anode, 3 V, 20. ... 9-Volt redirects here. ... An AAA battery is 44. ... ‹ The template below (Expand) is being considered for deletion. ... Four double-A batteries In science and technology, a battery is a device that stores energy and makes it available in an electrical form. ... D batteries are a battery typically used in high drain applications like products with motors, motion, heat, cars, or requiring extended run time. ...

  • Primary batteries irreversibly (within limits of practicality) transform chemical energy to electrical energy. When the initial supply of reactants is exhausted, energy cannot be readily restored to the battery by electrical means.[21]
  • Secondary batteries can be recharged; that is, they can have their chemical reactions reversed by supplying electrical energy to the cell, restoring their original composition.[22]

Historically, some types of primary batteries used, for example, for telegraph circuits, were restored to operation by replacing the components of the battery consumed by the chemical reaction. Secondary batteries are not indefinitely rechargeable due to dissipation of the active materials, loss of electrolyte and internal corrosion. Telegraphy (from the Greek words tele = far away and grapho = write) is the long distance transmission of written messages without physical transport of letters, originally over wire. ...


From a user's viewpoint, at least, batteries can be generally divided into two main types: non-rechargeable (disposable) and rechargeable. Each type is in wide usage, as each has its own advantages and disadvantages.[23] A disposable product is a product designed for cheapness and short-term convenience rather than medium to long-term durability, with most products only intended for single use. ... A rechargeable lithium polymer Nokia mobile phone battery. ...


Disposable batteries, also called primary cells, are intended to be used once and discarded. These are most commonly used in portable devices with either low current drain, are only used intermittently, or are used well away from an alternative power source. Primary cells were also commonly used for alarm and communication circuits where other electric power was only intermittently available. Primary cells cannot be reliably recharged, since the chemical reactions are not easily reversible and active materials may not return to their original forms. Battery manufacturers recommend against attempting to recharge primary cells, although some electronics enthusiasts claim it is possible to do so using special types of chargers.[24] A primary cell is any kind of electrolytic cell in which the electrochemical reaction of interest is not reversible. ...


By contrast, rechargeable batteries or secondary cells can be recharged by applying electrical current, which reverses the chemical reactions that occur during its use. Devices to supply the appropriate current are called chargers or rechargers. A secondary cell is any kind of electrolytic cell in which the electrochemical reaction that releases energy is reversible. ... For other uses, see Chemical reaction (disambiguation). ...


The oldest form of rechargeable battery still in modern usage is the "wet cell" lead-acid battery.[25] This battery is notable in that it contains a liquid in an unsealed container, requiring that the battery be kept upright and the area be well ventilated to ensure safe dispersal of the hydrogen gas produced by these batteries during overcharging. The lead-acid battery is also very heavy for the amount of electrical energy it can supply. Despite this, its low manufacturing cost and its high surge current levels make its use common where a large capacity (over approximately 10Ah) is required or where the weight and ease of handling are not concerns. A wet cell is a galvanic electrochemical cell with a liquid electrolyte. ... A valve-regulated, sometimes called sealed, lead acid battery Lead-acid batteries, invented in 1859 by French physicist Gaston Planté, are the oldest type of rechargeable battery. ... This article is about the chemistry of hydrogen. ...


A common form of lead-acid battery is the modern wet-cell car battery. This can deliver approximately 10,000 watts of power over a short period and has a peak current output that varies from 450 to 1100 amperes. An improved type of liquid electrolyte battery is the sealed valve regulated lead acid (VRLA) battery, popular in the automotive industry as a replacement for the lead-acid wet cell, as well as in many lower capacity roles including smaller vehicles and stationary applications such as emergency lighting and alarm systems. The one-way pressure activated valve eliminates electrolyte evaporation while allowing out-gassing to prevent rupture. This greatly improves resistance to damage from vibration and heat. VRLA batteries have the electrolyte immobilized, usually by one of two means: Lead-acid car battery A car battery is a type of rechargeable battery that supplies electric energy to an automobile[1]. Usually this refers to a SLI battery (Starting - Lighting - Ignition) to power the starter motor, the lights and the ignition system of a vehicle’s engine. ... For other uses, see Watt (disambiguation). ... For other uses, see Ampere (disambiguation). ... VRLA stands for valve regulated lead acid and is the designation for maintenance-free lead-acid batteries. ... Emergency lighting The name Emergency lighting itself implies that it is required in an Emergency. ... Burglar (or intrusion), fire and safety alarms are commonly found in electronic form today. ...

  • Gel batteries (or "gel cell") contain a semi-solid electrolyte to prevent spillage.
  • Absorbed Glass Mat (AGM) batteries absorb the electrolyte in a special fiberglass matting

Other portable rechargeable batteries include several "dry cell" types, which are sealed units and are therefore useful in appliances such as mobile phones and laptop computers. Cells of this type (in order of increasing power density and cost) include nickel-cadmium (NiCd), nickel metal hydride (NiMH) and lithium-ion (Li-Ion) cells. A gel battery is a lead-acid battery with gelified electrolyte. ... Absorbed glass mat Absorbed glass mat (AGM) is a class of lead-acid battery in which the electrolyte is absorbed into a fibreglass mat. ... An ultraportable IBM X31 with 12 screen on an IBM T43 Thin & Light laptop with a 14 screen HCLs $329 miniature notebooks with 6 TFT touchscreens launched in India on January 29, 2008. ... In engineering, specific power (sometimes also power per unit mass or power density) refers to the amount of power delivered by an energy source, divided by some measure of the sources size or mass. ... The nickel-cadmium battery (commonly abbreviated NiCd and pronounced nye-cad) is a popular type of rechargeable battery for portable electronics and toys using the metals nickel (Ni) and cadmium (Cd) as the active chemicals. ... A nickel metal hydride battery, abbreviated NiMH, is a type of rechargeable battery similar to a nickel-cadmium (NiCd) battery but has a hydrogen-absorbing alloy for the anode instead of cadmium. ... Lithium ion batteries (sometimes abbreviated Li-Ion or Li-On) are a type of rechargeable battery commonly used in consumer electronics. ...


Recent developments include batteries with embedded functionality such as USBCELL, with a built-in charger and USB connector within the AA format, enabling the battery to be charged by plugging into a USB port without a charger,[26] and low self-discharge (LSD) mix chemistries such as Hybrio,[27] ReCyko,[28] and Eneloop,[29] where cells are precharged prior to shipping. Note: USB may also mean upper sideband in radio. ...


Disposable

Not designed to be rechargeable - sometimes called "primary cells". "Disposable" may also imply that special disposal procedures must take place for proper disposal according to regulation, depending on battery type.

  • Zinc-carbon battery: mid cost, used in light drain applications.
  • Zinc-chloride battery: similar to zinc-carbon but slightly longer life.
  • Alkaline battery: alkaline/manganese "long life" batteries widely used in both light-drain and heavy-drain applications.
  • Silver-oxide battery: commonly used in hearing aids, watches, and calculators.
  • Lithium Iron Disulfide battery: commonly used in digital cameras. Sometimes used in watches and computer clocks. Very long life (up to ten years in wristwatches) and capable of delivering high currents but expensive. Will operate in sub-zero temperatures.
  • Lithium-Thionyl Chloride battery: used in industrial applications, including computers, electric meters and other devices which contain volatile memory circuits and act as a "carryover" voltage to maintain the memory in the event of a main power failure. Other applications include providing power for wireless gas and water meters. The cells are rated at 3.6 Volts and come in 1/2AA, AA, 2/3A, A, C, D & DD sizes. They are relatively expensive, but have a long shelf life, losing less than 10% of their capacity in ten years.[30]
  • Mercury battery: formerly used in digital watches, radio communications, and portable electronic instruments. Manufactured only for specialist applications due to toxicity.
  • Zinc-air battery: commonly used in hearing aids.
  • Thermal battery: high-temperature reserve. Almost exclusively military applications.
  • Water-activated battery: used for radiosondes and emergency applications.
  • Nickel Oxyhydroxide battery: Ideal for applications that use bursts of high current, such as digital cameras. They will last two times longer than alkaline batteries in digital cameras.[31]
  • Paper battery: In August 2007, a research team at RPI (led by Drs. Robert Linhardt, Pulickel M. Ajayan, and Omkaram Nalamasu) developed a paper battery with aligned carbon nanotubes, designed to function as both a lithium-ion battery and a supercapacitor, using ionic liquid, essentially a liquid salt, as electrolyte. The sheets can be rolled, twisted, folded, or cut into numerous shapes with no loss of integrity or efficiency, or stacked, like printer paper (or a voltaic pile), to boost total output. As well, they can be made in a variety of sizes, from postage stamp to broadsheet. Their light weight and low cost make them attractive for portable electronics, aircraft, and automobiles, while their ability to use electrolytes in blood make them potentially useful for medical devices such as pacemakers. In addition, they are biodegradable, unlike most other disposable cells.[32][33]

Zinc-carbon batteries of different sizes. ... Alkaline batteries A Duracell AA alkaline battery 2 Duracell-Brand AAA Alkaline batteries Alkaline batteries are a type of power cell dependent upon the reaction between zinc and manganese dioxide (Zn/MnO2). ... A silver oxide battery (IEC code: S), also known as a silver–zinc battery, is a primary cell (although it may be used as a secondary cell with an open circuit potential of 1. ... A mercury battery (also called mercuric oxide battery, or mercury cell) is a non-rechargeable electrochemical battery, a primary cell. ... // Toxic and Intoxicated redirect here – toxic has other uses, which can be found at Toxicity (disambiguation); for the state of being intoxicated by alcohol see Drunkenness. ... Zinc-air batteries, also called “zinc-air fuel cells,“ are non-rechargeable electro-chemical batteries powered by the oxidation of zinc with oxygen from the air. ... Behind the ear aid For the song, see Flood (album). ... Molten salt batteries are a class of primary cell and secondary cell high temperature electric battery that use molten salts as an electrolyte. ... Side-view of water-activated radiosonde battery Radiosonde battery still in protective wrapper Water-activated batteries are disposable batteries that do not contain electrolyte and hence produce no voltage until they are soaked in water for several minutes. ... radiosonde with measuring instruments A radiosonde (Sonde is German for probe) is a unit for use in weather balloons that measures various atmospheric parameters and transmits them to a fixed receiver. ... In August 2007, a research team at Rensselaer (led by Drs. ... Rensselaer Polytechnic Institute, or RPI, is a nonsectarian, coeducational private research university in Troy, New York, a city lying just outside the state capital of Albany. ... Dr. Ajayan holding a quartz tube used for chemical vapor deposition of carbon nanotubes. ... MC and BC series supercapacitors (up to 3000 farad capacitance) produced by Maxwell Technologies Supercapacitors, also known as ultracapacitors or electrochemical double layer capacitors (EDLC), are electrochemical capacitors that have an unusually high energy density when compared to common capacitors, typically on the order of thousands of times greater than... Ionic liquid An ionic liquid is a liquid that contains essentially only ions. ... This article is about common table salt. ... An electrolyte is any substance containing free ions that behaves as an electrically conductive medium. ... A copper-zinc Voltaic pile A Voltaic pile on display in the Tempio Voltiano The Voltaic pile is the first modern electric battery, invented by Alessandro Volta in 1800. ... A selection of Hong Kong postage stamps A postage stamp is evidence of pre-paying a fee for postal services. ... Newspaper sizes in August 2005. ... Flying machine redirects here. ... Car redirects here. ... A pacemaker (sometimes called a pacer) is a competitor who enters an athletics race with little or no intention of winning, but purely to set a fast pace for other competitors to follow. ... Biodegradation is the decomposition of material by microorganisms. ...

Rechargeable

A rechargeable lithium polymer Nokia mobile phone battery.
A rechargeable lithium polymer Nokia mobile phone battery.

Also known as secondary batteries or accumulators. The National Electrical Manufacturers Association has estimated that U.S. demand for rechargeables is growing twice as fast as demand for non-rechargeables. [34] There are a few main types: Image File history File linksMetadata Download high-resolution version (1024x768, 155 KB)By Richard Wheeler (Zephyris) 2007. ... Image File history File linksMetadata Download high-resolution version (1024x768, 155 KB)By Richard Wheeler (Zephyris) 2007. ... This article is about the telecommunications corporation. ... A rechargeable lithium polymer Nokia mobile phone battery. ... This charger charges the battery until it reaches a specific voltage and then it trickle charges the battery until it is removed. ... This article is about the standards association NEMA. For other uses, see Nema. ...

  • Nickel-cadmium battery (NiCd): Best used for motorized equipment and other high-discharge, short-term devices. NiCd batteries can withstand even more drain than NiMH; however, the mAh rating is not high enough to keep a device running for very long, and the memory effect is far more severe.[35]
  • Nickel-metal hydride battery (NiMH): Best used for high-tech devices. NiMH batteries can last up to four times longer than alkaline batteries because NiMH can withstand high current for a long while.[36]
  • Rechargeable alkaline battery: Uses similar chemistry as non-rechargeable alkaline batteries and are best suited for similar applications. Additionally, they hold their charge for years, unlike NiCd and NiMH batteries.[37]

The nickel-cadmium battery (commonly abbreviated NiCd and pronounced nye-cad) is a popular type of rechargeable battery for portable electronics and toys using the metals nickel (Ni) and cadmium (Cd) as the active chemicals. ... With batteries, the memory effect, also known as lazy battery effect, is an effect observed in some rechargeable batteries that causes them to hold less charge. ... A nickel metal hydride battery, abbreviated NiMH, is a type of rechargeable battery similar to a nickel-cadmium (NiCd) battery but has a hydrogen-absorbing alloy for the anode instead of cadmium. ... Rechargeable alkaline battery is a type of alkaline battery that is rechargeable. ...

Flow batteries

Flow batteries are a special class of rechargeable battery where additional quantities of electrolyte are stored outside the main power cell of the battery, and circulated through it by pumps or by movement.[38] Flow batteries can have extremely large capacities and are used in marine applications and are gaining popularity in grid energy storage applications. A Flow Battery is a form of secondary battery in which the electrolytes are not confined to within the power cell its self. ... An electrolyte is any substance containing free ions that behaves as an electrically conductive medium. ... Ffestiniog pumped storage power station upper reservoir Grid energy storage lets energy producers send excess electricity over the electricity transmission grid to temporary electricity storage sites that become energy producers when electricity demand is greater. ...


Zinc-bromine[38] and vanadium redox batteries are typical examples of commercially available flow batteries. The zinc-bromine flow battery is a type of hybrid flow battery. ... The vanadium redox ( and redox flow ) battery was first patented by the University of New South Wales in Australia in 1986. ...


Homemade cells

Almost any liquid or moist object that has enough ions to be electrically conductive can serve as the electrolyte for a cell. As a novelty or science demonstration, it is possible to insert two electrodes made of different metals into a lemon,[39] potato,[40] et cetera and generate small amounts of electricity. "Two-potato clocks" are also widely available in hobby and toy stores; they consist of a pair of cells, each consisting of a potato (lemon, et cetera) with two electrodes inserted into it, wired in series to form a battery with enough voltage to power a digital clock.[41] Homemade cells of this kind are of no real practical use, because they produce far less current—and cost far more per unit of energy generated—than commercial cells, due to the need for frequent replacement of the fruit or vegetable. In addition, one can make a voltaic pile from two coins (such as a nickel and a penny) and a piece of paper towel dipped in salt water. Such a pile would make very little voltage itself, but when many of them are stacked together in series, they can replace normal batteries for a short amount of time.[42] A lemon cell battery is made with a lemon and two metallic electrodes of different metals such as a copper penny or a copper plating. ... For other uses, see Potato (disambiguation). ... A copper-zinc Voltaic pile A Voltaic pile on display in the Tempio Voltiano The Voltaic pile is the first modern electric battery, invented by Alessandro Volta in 1800. ... For other uses, see Nickel (disambiguation). ... This article is about the coin. ... A roll of paper towel. ... This article or section seems not to be written in the formal tone expected of an encyclopedia entry. ... Left: Series  / Right: Parallel Arrows indicate direction of current flow. ...


Sony has developed a biologically friendly battery that generates electricity from sugar in a way that is similar to the processes observed in living organisms. The battery generates electricity through the use of enzymes that break down carbohydrates, which are essentially sugar.[43]


Lead acid cells can easily be manufactured at home, but a tedious charge/discharge cycle is needed to 'form' the plates. This is a process whereby lead sulfate forms on the plates, and during charge is converted to lead dioxide (positive plate) and pure lead (negative plate). Repeating this process results in a microscopically rough surface, with far greater surface area being exposed. This increases the current the cell can deliver. For an example, see [1].


Daniell cells are also easy to make at home. Aluminum-air batteries can also be produced with high purity aluminum. Aluminum foil batteries will produce some electricity, but they are not very efficient, in part because a significant amount of hydrogen gas is produced. Early 20th-century engraving of a gravity cell. ... Aluminium batteries are commonly known as Aluminium-air batteries, due to the reaction of oxygen in the air with Aluminium. ... Aluminium foil (aluminum foil in North American English) is aluminium prepared in thin sheets (on the order of . ... This article is about the chemistry of hydrogen. ...


Battery packs

Main article: Battery pack

The cells in a battery can be connected in parallel, series or in both. A parallel combination of cells has the same voltage as a single cell, but can supply a higher current (the sum of the currents from all the cells). A series combination has the same current rating as a single cell but its voltage is the sum of the voltages of all the cells. Most practical electrochemical batteries, such as 9-volt flashlight batteries and 12-volt automobile batteries, have several cells connected in series inside the casing.[44] Parallel arrangements suffer from the problem that, if one cell discharges faster than its neighbour, current will flow from the full cell to the empty cell, wasting power and possibly causing overheating. Even worse, if one cell becomes short-circuited due to an internal fault, its neighbour will be forced to discharge its maximum current into the faulty cell, leading to overheating and possibly explosion.[45] Cells in parallel are therefore usually fitted with an electronic circuit to protect them against these problems. In both series and parallel types, the energy stored in the battery is equal to the sum of the energies stored in all the cells. A battery pack is a set of any number of (preferably) identical batteries or individual battery cells. ... International safety symbol Caution, risk of electric shock (ISO 3864), colloquially known as high voltage symbol. ... In electricity, current refers to electric current, which is the flow of electric charge. ... Josephson junction array chip developed by NIST as a standard volt. ... Car redirects here. ...


Traction batteries

Main article: Traction battery

Traction batteries are high-power batteries designed to provide propulsion to move a vehicle, such as an electric car or tow motor. A major design consideration is power to weight ratio since the vehicle must carry the battery.[46] While conventional lead acid batteries[47] with liquid electrolyte have been used, gelled electrolyte[48] and AGM-type[49] can also be used, especially in smaller sizes. The Toyota RAV4 EV was powered by twenty-four 12 volt batteries, with an operational cost equivalent of over 165 miles per gallon at 2005 US gasoline prices. ... The Toyota RAV4 EV was powered by twenty-four 12 volt batteries, with an operational cost equivalent of over 165 miles per gallon at 2005 US gasoline prices. ... Power-to-weight ratio is a measure commonly used when comparing various vehicles (or engines), including automobiles, motorcycles and aircraft. ... To meet Wikipedias quality standards, this article or section may require cleanup. ... An electrolyte is any substance containing free ions that behaves as an electrically conductive medium. ... Absorbed glass mat Absorbed glass mat (AGM) is a class of lead-acid battery in which the electrolyte is absorbed into a fibreglass mat. ...


The largest installations of batteries for propulsion of vehicles are found in submarines, although the toxic gas produced by seawater contact with acid electrolyte is a considerable hazard. For other uses, see Submarine (disambiguation). ...


Battery types commercially used in electric vehicles include

See also: battery electric vehicles and hydrogen vehicle. A valve-regulated, sometimes called sealed, lead acid battery Lead-acid batteries, invented in 1859 by French physicist Gaston Planté, are the oldest type of rechargeable battery. ... Lead dioxide, PbO2, also plumbic oxide, is an oxide of lead, with lead in oxidation state +4. ... Sulfuric acid, (also known as sulphuric acid) H2SO4, is a strong mineral acid. ... Absorbed glass mat Absorbed glass mat (AGM) is a class of lead-acid battery in which the electrolyte is absorbed into a fibreglass mat. ... Molten salt batteries are a class of primary cell and secondary cell high temperature electric battery that use molten salts as an electrolyte. ... This article or section is in need of attention from an expert on the subject. ... Battery Electric Vehicles or BEVs are electric vehicles whose main energy storage is in the chemical energy of batteries. ... Sequel, a fuel cell-powered vehicle from General Motors Filler neck for hydrogen of a BMW, Museum Autovision, Altlußheim, Germany Tank for liquid hydrogen of Linde, Museum Autovision, Altlußheim, Germany A hydrogen vehicle is a vehicle that uses hydrogen as its on-board fuel for motive power. ...


Battery capacity and discharging

A device to check the charge of batteries
A device to check the charge of batteries

The more electrolyte and electrode material there is in the cell, the greater the capacity of the cell. Thus a small cell has less capacity than a larger cell, given the same chemistry (e.g. alkaline cells), though they develop the same open-circuit voltage.[51] 2 Duracell-Brand AAA Alkaline batteries Alkaline batteries are a type of power cell dependent upon the reaction between zinc and manganese dioxide (Zn/MnO2). ...


Because of the chemical reactions within the cells, the capacity of a battery depends on the discharge conditions such as the magnitude of the current, the duration of the current, the allowable terminal voltage of the battery, temperature and other factors.[51]


The available capacity of a battery depends upon the rate at which it is discharged.[52] If a battery is discharged at a relatively high rate, the available capacity will be lower than expected.


The battery capacity that battery manufacturers print on a battery is the product of 20 hours multiplied by the maximum constant current that a new battery can supply for 20 hours at 68 F° (20 C°),[53] down to a predetermined terminal voltage per cell.


A battery rated at 100 A·h will deliver 5 A over a 20 hour period at room temperature. However, if it is instead discharged at 50 A, it will run out of charge before the theoretically-expected 2 hours. For other uses, see Room temperature (disambiguation). ...


For this reason, a battery capacity rating is always related to an expected discharge duration—the standard duration is 20 hours.

h = frac{C_{text{Batt}}}{I}

where

CBatt is the battery capacity (typically given in mAh).
I is the current drawn from battery (mA).
h is the amount of time (in hours) that a battery can sustain.

The relationship between current, discharge time, and capacity for a lead acid battery is expressed by Peukert's law. The efficiency of a battery is different at different discharge rates. When discharging at low rate, the battery's energy is delivered more efficiently than at higher discharge rates. Apadana Hall, Persepolis: Angra Mainyu kills the primeval bull, whose seed is rescued by Mah, the moon, as the source for all other animals. ... Look up ma in Wiktionary, the free dictionary. ... Peukerts Law defines a way to measure the capacity of a Battery (electricity) over a range of discharge rates. ... Look up efficiency in Wiktionary, the free dictionary. ...


In general, the higher the ampere-hour rating, the longer the battery will last for a certain load. Installing batteries with different A·h ratings will not affect the operation of a device rated for a specific voltage unless the load limits of the battery are exceeded. Theoretically, a battery would operate at its A·h rating, but realistically, high-drain loads like digital cameras can result in lower actual energy, most notably for alkaline batteries.[23] For example, a battery rated at 2000 mAh may not sustain a current of 1 A for the full two hours. Look up digital camera in Wiktionary, the free dictionary. ...

Typical alkaline battery sizes and capacities[54] (at lowest discharge rates)
Diagram Size Capacity (mAh) Voltage ANSI/NEDA IEC Diam. (mm) Mass (g) Height (mm) Length (mm) Width (mm)
AAAA 625 1.5 25A LR8D425 8.3 6.5 42.5 cylindrical cylindrical
Image:N battery size.svg N 1000 1.5 910A LR1 12 9 30.2 cylindrical cylindrical
Image:AAA battery size.svg AAA 1250 1.5 24A LR03 10.5 11.5 44.5 cylindrical cylindrical
Image:AA battery size.svg AA 2850 1.5 15A LR6 14.5 23 50.5 cylindrical cylindrical
J 625 6 1412A 4LR61 prismatic 30 48.5 35.6 9.18
9V 625 9 1604A 6LR61 prismatic 45.6 48.5 26.5 17.5
Image:C battery size.svg C 8350 1.5 14A LR14 26.2 66.2 50 cylindrical cylindrical
Image:D battery size.svg D 20500 1.5 13A LR20 34.2 148 61.5 cylindrical cylindrical
Lantern 26000 6 915A 4R25Y prismatic 885 112 68.2 68.2
Lantern 26000 6 908A 4LR25X prismatic 885 115 68.2 68.2
Lantern 52000 6 918A 4LR25-2 prismatic 1900 127 136.5 73

Discharging performance of all batteries drops at low temperature.[55] 4. ... The American National Standards Institute or ANSI (pronounced an-see) is a nonprofit organization that oversees the development of standards for products, services, processes and systems in the United States. ... The National Electronic Distributors Association (NEDA) cooperates in standardization of names for components, such as batteries. ... The International Electrotechnical Commission (IEC) is an international standards organization dealing with electrical, electronic and related technologies. ... An AAAA battery is 42. ... Image File history File links This is a lossless scalable vector image. ... Image File history File links This is a lossless scalable vector image. ... An AAA battery is 44. ... Image File history File links This is a lossless scalable vector image. ... ‹ The template below (Expand) is being considered for deletion. ... Image File history File links This is a lossless scalable vector image. ... Four double-A batteries In science and technology, a battery is a device that stores energy and makes it available in an electrical form. ... Image File history File links This is a lossless scalable vector image. ... D batteries are a battery typically used in high drain applications like products with motors, motion, heat, cars, or requiring extended run time. ...


Battery lifetime

Life of primary batteries

Even if never taken out of the original package, disposable (or "primary") batteries can lose 8 to 20 percent of their original charge every year at a temperature of about 20°–30°C.[56] This is known as the "self discharge" rate and is due to non-current-producing "side" chemical reactions, which occur within the cell even if no load is applied to it. The rate of the side reactions is reduced if the batteries are stored at low temperature, although some batteries can be damaged by freezing. High or low temperatures may reduce battery performance. This will affect the initial voltage of the battery. For an AA alkaline battery this initial voltage is approximately normally distributed around 1.6 volts.


Life of rechargeable batteries

Rechargeable batteries traditionally self-discharge more rapidly than disposable alkaline batteries; up to three percent a day (depending on temperature). However, modern Lithium designs have reduced the self-discharge rate to a relatively low level (but still poorer than for primary batteries). Due to their poor shelf life, rechargeable batteries should not be stored and then relied upon to power flashlights or radios in an emergency. For this reason, it is a good idea to keep alkaline batteries on hand. NiCd Batteries are almost always "dead" when purchased, and must be charged before first use.


Although rechargeable batteries may be refreshed by charging, they still suffer degradation through usage. Low-capacity Nickel Metal Hydride (NiMH) batteries (1700-2000 mAh) can be charged for about 1000 cycles, whereas high capacity NiMH batteries (above 2500 mAh) can be charged for about 500 cycles.[57] Nickel Cadmium (NiCd) batteries tend to be rated for 1,000 cycles before their internal resistance increases beyond usable values. Normally a fast charge, rather than a slow overnight charge, will result in a shorter battery lifespan.[57] However, if the overnight charger is not "smart" (i.e. it cannot detect when the battery is fully charged), then overcharging is likely, which will damage the battery.[58] Degradation usually occurs because electrolyte migrates away from the electrodes or because active material falls off the electrodes. NiCd batteries suffer the drawback that they should be fully discharged before recharge. Without full discharge, crystals may build up on the electrodes, thus decreasing the active surface area and increasing internal resistance. This decreases battery capacity and causes the dreaded "memory effect". These electrode crystals can also penetrate the electrolyte separator, thereby causing shorts. NiMH, although similar in chemistry, does not suffer from "memory effect" to quite this extent.[59] With batteries, the memory effect, also known as lazy battery effect, is an effect observed in some rechargeable batteries that causes them to hold less charge. ... With batteries, the memory effect, also known as lazy battery effect, is an effect observed in some rechargeable batteries that causes them to hold less charge. ...


Automotive lead-acid rechargeable batteries have a much harder life. Because of vibration, shock, heat, cold, and sulfation of their lead plates, few automotive batteries last beyond six years of regular use. Automotive starting batteries have many thin plates to provide as much current as possible in a reasonably small package. Typically they are only drained a small amount before recharge. Care should be taken to avoid deep discharging a starting battery, since each charge and discharge cycle causes active material to be shed from the plates. Hole formation in the plates leads to less surface area for the current-producing chemical reactions, resulting in less available current when under load. Leaving a lead-acid battery in a deeply discharged state for any significant length of time allows the lead sulfate to crystallize, making it difficult or impossible to remove during the charging process. This can result in a permanent reduction in the available plate surface, and therefore reduced current output and energy capacity. For other uses, see battery (disambiguation). ...


"Deep-Cycle" lead-acid batteries such as those used in electric golf carts have much thicker plates to aid their longevity. The main benefit of the lead-acid battery is its low cost; the main drawbacks are its large size and weight for a given capacity and voltage. Lead-acid batteries should never be discharged to below 20% of their full capacity, because internal resistance will cause heat and damage when they are recharged. Deep-cycle lead-acid systems often use a low-charge warning light or a low-charge power cut-off switch to prevent the type of damage that will shorten the battery's life.


Special "reserve" batteries intended for long storage in emergency equipment or munitions keep the electrolyte of the battery separate from the plates until the battery is activated, allowing the cells to be filled with the electrolyte. Shelf times for such batteries can be years or decades. However, their construction is more expensive than more common forms.


Extending battery life

Battery life can be extended by storing the batteries at a low temperature, as in a refrigerator or freezer, because the chemical reactions in the batteries are slower. Such storage can extend the life of alkaline batteries by ~5%; while the charge of rechargeable batteries can be extended from a few days up to several months.[60] In order to reach their maximum voltage, batteries must be returned to room temperature; therefore, alkaline battery manufacturers like Duracell do not recommend refrigerating or freezing batteries.[61] Fridge redirects here. ... A freezer is a home appliance, usually found above the refrigerator that keeps foods frozen. ... A pair of Duracell AAA batteries. ...


Problems with batteries

Battery hazards

A battery explosion is caused by the misuse or malfunction of a battery, such as attempting to recharge a primary (non-rechargeable) battery,[62] or short circuiting a battery.[63] With car batteries, explosions are most likely to occur when a short circuit generates very large currents. In addition, car batteries liberate hydrogen when they are overcharged (because of electrolysis of the water in the electrolyte). Normally the amount of overcharging is very small, as is the amount of explosive gas developed, and the gas dissipates quickly. However, when "jumping" a car battery, the high current can cause the rapid release of large volumes of hydrogen, which can be ignited by a nearby spark (for example, when removing the jumper cables). For alternate meanings see Short circuit (disambiguation) A short circuit (sometimes known as simply a short) is a fault whereby electricity moves through a circuit in an unintended path, usually due to a connection forming where none was expected. ... This article is about the chemistry of hydrogen. ... In chemistry and manufacturing, electrolysis is a method of separating chemically bonded elements and compounds by passing an electric current through them. ...


When a battery is recharged at an excessive rate, an explosive gas mixture of hydrogen and oxygen may be produced faster than it can escape from within the walls of the battery, leading to pressure build-up and the possibility of the battery case bursting. In extreme cases, the battery acid may spray violently from the casing of the battery and cause injury. Overcharging—that is, attempting to charge a battery beyond its electrical capacity—can also lead to a battery explosion, leakage, or irreversible damage to the battery. It may also cause damage to the charger or device in which the overcharged battery is later used. Additionally, disposing of a battery in fire may cause an explosion as steam builds up within the sealed case of the battery.[63]


Environmental concerns

Since their development over 250 years ago, batteries have remained among the most expensive energy sources, and their manufacturing consumes many valuable resources and often involves hazardous chemicals. Used batteries also contribute to electronic waste. For these reasons, many areas now have battery recycling services available to recover some of the more toxic (and sometimes valuable) materials from used batteries.[64] Batteries may be harmful or fatal if swallowed.[65] It is also important to prevent dangerous elements, such as lead, mercury, and cadmium, that are found in some types of batteries from entering the environment. This article or section does not cite any references or sources. ... The international recycling symbol. ... For the Bush song, see Swallowed (song). ... General Name, Symbol, Number lead, Pb, 82 Chemical series Post-transition metals or poor metals Group, Period, Block 14, 6, p Appearance bluish gray Standard atomic weight 207. ... This article is about the element. ... General Name, Symbol, Number cadmium, Cd, 48 Chemical series transition metals Group, Period, Block 12, 5, d Appearance silvery gray metallic Standard atomic weight 112. ...


Development

Since the late 1990s, advances in battery technologies have been driven by skyrocketing demand for laptop computers and mobile telephones, with consumer demand for more features, larger, brighter displays and longer battery time, driving research and development in the field. The electric vehicle marketplace has reaped the benefits of these advances. For battery powered passenger automobiles, see battery electric vehicle. ...


See also

Electronics Portal
energy Portal

Image File history File links Nuvola_apps_ksim. ... Image File history File links Portal. ... In electronics, an A battery is any battery used to provide power to the filament of a vacuum tube. ... In electronics, a B battery is any battery used to provide the plate voltage of a vacuum tube. ... In electronics, a C battery is any battery used to provide bias to the control grid of a vacuum tube. ... ‹ The template below (Expand) is being considered for deletion. ... An AAA battery is 44. ... An AAAA battery is 42. ... Four double-A batteries In science and technology, a battery is a device that stores energy and makes it available in an electrical form. ... D batteries are a battery typically used in high drain applications like products with motors, motion, heat, cars, or requiring extended run time. ... Alkaline batteries A Duracell AA alkaline battery 2 Duracell-Brand AAA Alkaline batteries Alkaline batteries are a type of power cell dependent upon the reaction between zinc and manganese dioxide (Zn/MnO2). ... 4 rechargeable nickel metal hydride AA batteries European Union Council Directive on Batteries and Accumulators and Waste Batteries 2006/66/EC of 6 September 2006 . ... Lead-acid car battery A car battery is a type of rechargeable battery that supplies electric energy to an automobile[1]. Usually this refers to a SLI battery (Starting - Lighting - Ignition) to power the starter motor, the lights and the ignition system of a vehicle’s engine. ... The Galvanic cell, named after Luigi Galvani, consists of two different metals connected by a salt bridge or a porous disk between the individual half-cells. ... A demonstration electrochemical cell setup resembling the Daniell cell. ... Energy density is the amount of energy stored in a given system or region of space per unit volume, or per unit mass, depending on the context. ... A valve-regulated, sometimes called sealed, lead acid battery Lead-acid batteries, invented in 1859 by French physicist Gaston Planté, are the oldest type of rechargeable battery. ... 4. ... Four double-A (AA) rechargeable batteries In science and technology, a battery is a device that stores chemical energy and makes it available in an electrical form. ... The chemical compound Titanic acid, Ti(OH)4, is a white weak acid that is a hydrated form of titanium dioxide. ... A rechargeable lithium polymer Nokia mobile phone battery. ... A rechargeable lithium polymer Nokia mobile phone battery. ... Battery recycling is an recycling activity that aims to reduce the amount of batteries going into landfills. ... This article is about Thermal runaway. ... Most rechargeable batteries, particularly nickel-cadmium batteries or nickel metal hydride batteries, have a moderate rate of self discharge, meaning they gradually lose their charge even if they are not used in a device. ... Type CR2032 watch battery (lithium anode, 3 V, 20. ...

References

Notes

  1. ^ Battery" (def. 6), The Random House Dictionary of the English Language, the Unabridged Edition (2nd edition), 1996 ed.
  2. ^ Merriam-Webster Online Dictionary: "battery"
  3. ^ Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (PDF) 1-2. Retrieved on 2007-03-14.
  4. ^ Battery - Background, Primary cells, Secondary cells - Net Industries Science Encyclopedia. Retrieved 26 August 2007.
  5. ^ Battery Recycling - Cost-Effective and Safe Disposal - Battery Solutions. Retrieved 6 January 2008.
  6. ^ Battery Technology: History - ExtremeTech. Retrieved 10 September 2007.
  7. ^ Batteries | Product Stewardship | Wastes | EPA. Retrieved 11 September 2007.
  8. ^ Municipal Solid Waste - Commodities: Batteries - EPA. Retrieved 11 September 2007.
  9. ^ Willie Weinberg. Volta - The Italian American Website of New York. Accessed 19 March 2007.
  10. ^ Saslow, Ch. 8, p. 338.
  11. ^ Battery History, Technology, Applications and Development. Accessed 19 March 2007.
  12. ^ Power Shift: DFJ on the lookout for more power source investments. Accessed 20 November 2005.
  13. ^ Marshall Brain. "How Batteries Work" - Howstuffworks. Accessed 28 March 2007.
  14. ^ BBC- Rough Science Library. Accessed 28 March 2007.
  15. ^ Saslow 338.
  16. ^ a b Knight 943.
  17. ^ Knight 976.
  18. ^ Terminal Voltage - Tiscali Reference. Originally from Hutchinson Encyclopaedia. Accessed 7 April 2007.
  19. ^ Dingrando 674.
  20. ^ Dingrando 677.
  21. ^ Dingrando 675.
  22. ^ Fink, Ch. 11, Sec. "Batteries and Fuel Cells."
  23. ^ a b Isidor Buchmann, Will secondary batteries replace primaries? - Battery University. Retrieved 6 January 2008.
  24. ^ Battery Xtender. Retrieved 7 March 2007.
  25. ^ Isidor Buchmann, Can the lead-acid battery compete in modern times? - Battery University. Retrieved 2 September 2007.
  26. ^ USBCELL - Revolutionary rechargeable USB battery that can charge from any USB port. Retrieved 6 November 2007.
  27. ^ Long Life Batteries You Can Recharge - Hybrio. Retrieved 6 January 2008.
  28. ^ GP ReCyko. Retrieved 6 January 2008.
  29. ^ SANYO Presents 'eneloop' : A New Battery in place of Dry Cell Battery for the 21st Century. Retrieved 6 January 2008.
  30. ^ Tadiran Batteries - Better By Design. Retrieved 21 January 2008.
  31. ^ Edward C. Baig, USATODAY.com - Batteries up! With more power. Retrieved 21 January 2008.
  32. ^ August 2007 Globe and Mail
  33. ^ Michael Mullaney, RPI: News & Events - Beyond Batteries: Storing Power in a Sheet of Paper. Retrieved 14 August 2007.
  34. ^ Batteries | Product Stewardship | Wastes | EPA
  35. ^ MPower: Nickel Cadmium NiCad Batteries. Retrieved 2006 August 2007.
  36. ^ Energizer.com - Products - Rechargeables. Retrieved 26 August 2007.
  37. ^ Welcome to Juice Batteries. Retrieved 21 January 2008.
  38. ^ a b Flow Batteries - MPower. Retrieved 9 September 2007.
  39. ^ ushistory.org: The Lemon Battery. Accessed 10 April 2007.
  40. ^ ZOOM . activities . phenom . Potato Battery. Accessed 10 April 2007.
  41. ^ Two-Potato Clock - Science Kit and Boreal Laboratories. Accessed 10 April 2007.
  42. ^ Howstuffworks "Battery Experiments: Voltaic Pile". Accessed 10 April 2007.
  43. ^ Sony Develops A Bio Battery Powered By Sugar. Accessed 24 August 2007.
  44. ^ Howstuffworks "Battery Reactions and Chemistry". Retrieved 20 September 2007.
  45. ^ Isidor Buchmann, Serial and parallel battery configurations - Battery University. Retrieved 26 August 2007.
  46. ^ Engineers Edge: Traction Battery. Retrieved 26 August 2007.
  47. ^ Battery Council International: Lead Acid Batteries. Retrieved 26 August 2007.
  48. ^ http://mastervolt-solar.com/batteries/index.asp Products: Mastervolt gel batteries]. Retrieved 26 August 2007.
  49. ^ Johnson Controls Inc.: AGM technology for semi-traction. Retrieved 26 August 2007.
  50. ^ Dingrando 675.
  51. ^ a b Battery Knowledge - AA Portable Power Corp.. Accessed 16 April 2007.
  52. ^ Battery Capacity - Techlib. Accessed 10 April 2007.
  53. ^ Battery Backup Application Handbook - Transtronics. Retrieved 5 January 2008.
  54. ^ Alkaline Technical Information. Energizer.
  55. ^ Discharging at high and low temperature
  56. ^ Self discharge of batteries - Corrosion Doctors. Retrieved 9 September 2007.
  57. ^ a b Rechargeable battery Tips - NIMH Technology Information. Retrieved 10 August 2007.
  58. ^ battery myths vs battery facts - free information to help you learn the difference. Retrieved 10 August 2007.
  59. ^ What does ‘memory effect’ mean?. Retrieved 10 August 2007.
  60. ^ Ask Yahoo: Does putting batteries in the freezer make them last longer?. Retrieved 7 March 2007.
  61. ^ Duracell: Battery Care. Retrieved 7 March 2007.
  62. ^ Energizer.com - Learning Center - Energizer and the Environment. Accessed 17 December 2007.
  63. ^ a b Battery dont's - Global-Batteries. Retrieved 20 August 2007.
  64. ^ Battery Recycling » Earth 911. Retrieved 9 September 2007.
  65. ^ Product Safety DataSheet - Energizer (PDF, p. 2). Retrieved 9 September 2007.

Year 2007 (MMVII) was a common year starting on Monday of the Gregorian calendar in the 21st century. ... is the 73rd day of the year (74th in leap years) in the Gregorian calendar. ... Energizer Holdings (formerly Eveready Battery), headquartered in St. ...

Further reading

  • Dingrando, Laurel; et al. (2007). Chemistry: Matter and Change. New York: Glencoe/McGraw-Hill. ISBN 978-0-07-877237-5.  Ch. 21 (pp. 662-695) is on electrochemistry.
  • Fink, Donald G.; H. Wayne Beaty (1978). Standard Handbook for Electrical Engineers, Eleventh Edition. New York: McGraw-Hill. ISBN 0-07020974-X. 
  • Knight, Randall D. (2004). Physics for Scientists and Engineers: A Strategic Approach. San Francisco: Pearson Education. ISBN 0-8053-8960-1.  Chs. 28-31 (pp. 879-995) contain information on electric potential.
  • Linden, David; Thomas B. Reddy (2001). Handbook Of Batteries. New York: McGraw-Hill. ISBN 0-0713-5978-8. 
  • Saslow, Wayne M. (2002). Electricity, Magnetism, and Light. Toronto: Thomson Learning. ISBN 0-12-619455-6.  Chs. 8-9 (pp. 336-418) have more information on batteries.

External links

Wikimedia Commons has media related to:
Battery
  • Battery University
  • HowStuffWorks: How batteries work
  • Batteries Recycling Process
  • Cellphone batteries explained
  • Battery guide for digital cameras
  • Battery and batteries knowledge base
  • Battery Overview
  • Storing power in a sheet of paper
  • Comprehensive knowledge base about battery technology, battery applications, chargers and ancillary equipment.
  • Improvements in battery performance due to nanotechnology
  • Nonrechargeable batteries

  Results from FactBites:
 
Battery Education: Battery and Electricity Vocabulary (0 words)
A blog that offers a basic understanding of battery technology, battery uses, and technical elements of battery's for portable devices.
Battery- A source of electrical energy that is created by a
battery where the electrical charges leave or enter the battery.
  More results at FactBites »

 
 

COMMENTARY     


Share your thoughts, questions and commentary here
Your name
Your comments

Want to know more?
Search encyclopedia, statistics and forums:

 


Press Releases |  Feeds | Contact
The Wikipedia article included on this page is licensed under the GFDL.
Images may be subject to relevant owners' copyright.
All other elements are (c) copyright NationMaster.com 2003-5. All Rights Reserved.
Usage implies agreement with terms, 1022, m